Change3D: Revisiting Change Detection and Captioning from A Video Modeling
Perspective

Supplementary Material

1. More Experimental Details
1.1. Dataset Description

Binary Change Detection Datasets: (1) The LEVIR-CD
[2] comprises 637 bitemporal image pairs sourced from
Google Earth, each with a high resolution of 0.5 m/pixel.
Spanning images captured from 2002 to 2018 in various
locations, this dataset includes annotations for 31333 indi-
vidual building changes. (2) The WHU-CD [10] dataset
focuses on building change detection and contains high-
resolution (0.2 m/pixel) bi-temporal aerial images, total-
ing 32507x 15354 pixels. It primarily encompasses ar-
eas affected by earthquakes and subsequent reconstruction,
mainly involving building renovations. (3) The CLCD
[16] dataset consists of cropland change samples, includ-
ing buildings, roads, lakes, efc. The bi-temporal images in
CLCD were collected by Gaofen-2 in Guangdong Province,
China, in 2017 and 2019, respectively, with spatial resolu-
tions ranging from 0.5 to 2 m. Following the standard pro-
cedure detailed in [17, 21], each image of the three datasets
is segmented into 256x256 patches. Consequently, the
LEVIR-CD dataset is divided into 7120 pairs for training,
1024 pairs for validation, and 2048 pairs for testing. The
WHU-CD dataset is partitioned into 5947 training pairs,
744 validation pairs, and 744 test pairs. The CLCD dataset
is divided into 1440, 480, and 480 pairs for training, valida-
tion, and testing, respectively.

Semantic Change Detection Datasets: (1) The HRSCD
[4] dataset contains a total of 291 image pairs of
10000 x 10000 pixels, each with a resolution of 0.5 m/pixel.
The images cover a range of urban and countryside ar-
eas in Rennes and Caen, France, including five classes of
land cover, i.e., artificial surface, agricultural areas, for-
est, wetland, and water. (2) The SECOND [20] dataset
consists of 4662 pairs of aerial images collected from sev-
eral platforms and sensors, comprising of six land-cover
categories, i.e., non-vegetated ground surface, tree, low-
vegetation, water, buildings, and playgrounds, which are
frequently involved in natural and man-made geographical
changes. These pairs of images are distributed over var-
ious cities, including Hangzhou, Chengdu, and Shanghai.
Considering that most of the labeled areas don’t change in
HRSCD, e.g., artificial surfaces and agricultural lands only
account for 0.6% of this dataset [22], we discard image pairs
with less than 10% of the pixels changed. Each image of the
two datasets is cropped into 256 x 256 non-overlap patches.
Consequently, the HRSCD dataset is split into 6525, 932,

and 1865 pairs for training, validation, and testing, and the
SECOND dataset is divided into 11872 training pairs and
6776 testing pairs, respectively.

Building Damage Assessment Dataset: The xBD [8] is
a large-scale building damage assessment dataset that pro-
vides high-resolution (0.8 m/pixel) satellite imagery with
building localization and damage level labels, collected
from 19 disaster events such as floods and earthquakes
with an image size of 1024 x 1024 pixels. The dataset uses
polygons to represent building instances and provides four
damage categories, i.e., non-damage, minor damage, major
damage, and destroyed for each building. The minor dam-
age pixels represent visible roof cracks or partially burnt
structures while the major damage represents a partial wall,
roof collapse, or structure surrounded by water. The de-
stroyed label means that the building structure has com-
pletely collapsed, scorched or is no longer present. All
the images are cropped into 256 X256 non-overlap patches,
yielding 44785, 14928, and 14928 image pairs for training,
holdout, and testing, respectively.

Change Captioning Datasets: (1) The LEVIR-CC [14]
dataset is derived primarily from the LEVIR-CD [2], with
each image having a spatial resolution of 1024 x 1024 pixels
and a resolution of 0.5 m/pixel. These bi-temporal images
are sourced from 20 regions in Texas, USA, with a time
span of 5 to 15 years. Each image pair is annotated with five
sentences provided by five distinct annotators to describe
the differences between the images. (2) The DUBAI-CC [9]
dataset focuses on urbanization changes in Dubai between
2000 and 2010. It contains 500 image tiles, each 50x50
pixels, to analyze urbanization, extracted from bi-temporal
images in the visible and infrared bands. It identifies six
broad categories of change: roads, houses, buildings, green
areas, lakes, and islands. Each bi-temporal image is anno-
tated by five annotators, with each description containing at
least three words addressing the spatial distribution and at-
tributes of the changes. All images are cropped or resized
into 256x256 patches. The LEVIR-CC dataset is divided
into 6815, 1333, and 1929 pairs for training, validation, and
testing, respectively, and the DUBAI-CC dataset is split into
300 training pairs, 50 validation pairs, and 150 testing pairs.

1.2. Attention Visualization Details

As illustrated in Fig. 4 (see in our paper), to understand the
feature distribution learned in each component within the
models, we select three representative bi-temporal image-
based methods for comparison, i.e., GASNet [21], AMT-



Table 1. Study the effectiveness of the proposed method with dif-
ferent 3D architectures on three binary change detection datasets, re-

Table 2. Study the effectiveness of the proposed method with
different 3D architectures on two semantic change detection

spectively. datasets.
Method LEVIR-CD WHU-CD CLCD Method HRSCD SECOND
F1 ToU OA | F1 1IoU OA | F1 IoU OA etho Fscqg mloU OA  SeK | F,.q mloU OA SeK
13D [1] 91.21 83.84 99.11|94.18 89.01 99.55|78.67 64.84 96.92 13D [1] 70.99 66.41 81.10 23.3161.78 71.95 87.09 20.99
Slow-R50 [6]  |91.39 84.14 99.13|94.37 89.34 99.56|78.82 65.05 96.93 Slow-R50 [6]  |71.20 66.93 81.91 23.55|61.93 72.11 87.41 21.22
UniFormer-XS [12]/91.76 84.77 99.16|94.23 89.08 99.55|78.10 64.07 96.89 UniFormer-XS [12]|73.69 69.30 83.07 27.31|62.00 71.79 87.03 21.22
X3D-L [5] 91.82 84.87 99.17|94.56 89.69 99.57|78.03 63.97 96.87 X3D-L [5] 73.29 68.67 82.57 26.85|62.83 72.95 87.42 22.98

Table 3. Study the effectiveness of the proposed method with different 3D architectures on the LEVIR-CC

Table 4. uantitative
and DUBAI-CC datasets. Abbreviations B, M, R, and C refer to BLEU, METEOR, ROUGE, and CIDEr, . Q .
. evaluation of attention
respectively.
maps.
LEVIR-CC DUBAI-CC
Method Bl B2 B3 B4 M R C |B1 B2 B3 B4 M R C Method [ MSE
5
13D [1] 86.09 78.06 71.16 65.34 40.18 75.30 138.29|73.11 60.80 50.42 40.69 28.68 60.01 91.18 Slf/‘['sfﬁei [['] 17]] 8?2
Slow-R50 [6] 85.56 77.65 70.46 64.52 39.94 75.01 137.52|73.05 60.14 48.43 37.83 27.22 57.56 88.81 EADTeer (18] 0'25
UniFormer-XS [12](86.75 78.84 71.68 65.58 40.86 75.98 140.15|70.27 57.11 45.70 35.26 25.96 54.03 81.66 Change3D 0'07
X3D-L [5] 85.81 77.81 70.57 64.38 40.03 75.12 138.29|72.25 58.68 47.13 36.80 27.06 56.04 86.19 2 .

Net [17], and EATDer [18]. The outputs F; and F; of these
methods represent the final layer’s output from the shared-
weight image encoder at time 7% and 75, respectively. The
differential features, represented as F-, are extracted by the
change extractor from the final layer to depict alterations.
In our method, F; and F» correspond to the final layer’s
output during video feature encoding at time 73 and 75, re-
spectively, while Fo represents the perception features. For
better visualization of the feature maps, we employ max and
average pooling operations across the channel dimension to
compress the features, then combine them via element-wise
addition, and subsequently normalize them within the range
ofOto 1.

In Tab. 4, we normalize the values in the attention map
to [0, 1], apply a threshold of 0.5 to create binary maps, and
calculate the MSE against the ground truth. Results show
that our method achieves the lowest MSE and thus is more
effective in focusing on changed regions.

Table 5. Investigation on the impact of different initialization
methods for perception frames across three binary change detec-
tion datasets.

Table 6. Investigation on the impact of different initialization
methods for perception frames on the xBD dataset.

Initialization

loc cls overall
Fl Fl Fl

Damage F; Per-class

Non Minor Major Destroy

Zeros
Ones
Uniform
Random

85.73 7529 78.42
85.75 7551 78.58
85.96 75.67 78.76
85.7476.71 79.42

94.95 57.35 73.40 86.50
95.00 57.12 74.38 86.36
94.94 57.05 75.00 86.43
95.08 58.70 76.50 86.76

Iitializa LEVIR-CD WHU-CD CLCD
mbalizallon =g —1,0 0A | FI _ToU OA | FI IToU OA
Zeros  |91.64 84.56 99.16/94.19 89.02 99.55|77.15 62.79 96.67

Ones
Uniform
Random

91.67 84.61 99.15
91.75 84.77 99.16
91.82 84.87 99.17

94.27 89.17 99.55
94.43 89.45 99.56
94.56 89.69 99.57

77.05 62.67 96.71
77.76 63.61 96.80
78.03 63.97 96.87

2. More Diagnostic Experiments

Effectiveness with different architectures. The effective-
ness of the proposed Change3D with different 3D architec-

tures on BCD, SCD, and CC tasks is presented in Tab. 1-3.
Notably, all video models exhibit competitive performance,
underscoring the efficacy of the proposed method with var-
ious video modeling architectures.

Impact of initialization on perception frames. We ex-
plore the effects of various initialization methods on per-
ception frames by employing four different approaches: ini-
tializing with zeros, ones, uniform values between 0 and 1,
and random initialization (i.e., with a mean of 0 and a stan-
dard deviation of 1). Analysis of Tab. 5-6 reveals that fixed-
value initialization is less effective compared to the other
methods. Random initialization yields the most favorable
outcomes, which is reasonable as it enables a more robust
generation of perception features.

Impact of different similarity losses. We conduct ex-
tensive ablation experiments to explore the impact of simi-
larity losses, including L1, L2, Contrastive (with a margin
of 0.5), Angular, and Cosine. Tab. 7 presents several key
observations: (1) Without the similarity loss, Change3D ex-
hibits inferior performance compared to others, highlight-
ing the effectiveness and necessity of the similarity loss for
semantic change detection task. (2) Cosine and Angular
losses outperform others on both HRSCD and SECOND
datasets, as they better handle changes in content rather than



Table 7. Investigation on the impact of different similarity loss
functions across two semantic change detection datasets.

Similarity HRSCD SECOND
Loss F,.q mloU OA SeK | F,.q mloU OA SeK

- 72.28 67.74 82.01 25.02|61.49 71.97 86.86 21.08

L1 73.13 68.50 82.58 26.32|61.67 72.14 87.09 21.28
L2 72.61 68.17 82.11 25.84|61.93 72.16 87.08 21.39
Contrastive | 72.97 68.54 82.63 26.16|62.03 72.21 87.16 21.55
Angular |73.28 68.73 82.66 26.65|62.64 72.65 87.26 22.58
Cosine [73.29 68.59 82.74 26.73|62.61 72.84 87.40 22.86

Table 8. Performance comparison of several representative meth-
ods with random initialization across three binary change detec-
tion datasets.

loc
cls
overall

0% 25% 50% 75%  100%

Pre-training Data Size

Figure 1. Pre-training data size vs. performance on the xBD
dataset.
Table 10. Investigation on the impact of different pre-trained

Method

LEVIR-CD

WHU-CD

CLCD

F1 IoU OA

F1 IoU OA

F1 IoU OA

GASNet [21]
AMTNet [17]
EATDer [18]

89.38 82.59 98.86
88.94 80.08 98.89
89.35 82.31 98.86

90.85 82.36 99.06
90.23 79.27 98.78
88.79 80.01 99.07

60.83 42.35 92.50
69.32 52.17 95.29
69.46 53.35 94.68

Change3D

90.80 83.16 99.08

92.40 85.88 99.41

71.55 55.71 96.11

Table 9. Performance comparison of several representative meth-
ods with random initialization on the xBD dataset.

Damage F; Per-class
Non Minor Major Destroy

ChangeOS-R101 [23]|80.31 67.74 72.11 |88.80 46.86 67.30 75.09
DamFormer [3] |80.70 69.48 72.19 |88.23 49.53 68.02 78.34
PCDASNet [19] |80.05 68.79 72.36 |90.05 48.76 71.69 78.84

Change3D 81.00 71.54 74.38 |94.11 51.99 71.78 82.53

Method Floc  Fgls pgverall

intensity or scale. L1, L2, and Contrastive losses are more
sensitive to outliers, potentially skewing results, with Con-
trastive loss also being highly sensitive to the margin.
Impact of pre-training vs. performance. (1) Since
most 2D-model-based methods are typically initialized with
ImageNet pre-training, our method is pre-trained using
video data, such as K400 [11], and SSv2 [7], etc. To elim-
inate the influence of pre-training, we compare Change3D
with several 2D-model-based methods using random initial-
ization, as depicted in Tab. 8-9. The table shows that under
the identical initialization setting, Change3D consistently
outperforms other approaches, highlighting the superior-
ity of the proposed method. (2) Most current state-of-the-
art methods use pre-trained weights to initialize visual en-
coders, e.g., ImageNet1K (1.2M images) for AMTNet [17],
DEFO [13], and SEN [24], and CLIP-400M (400M image-
text pairs) for PromptCC [15]. Our video encoders use pre-
trained datasets like K400 (1.9M images), AVA (1.6M im-
ages), and SSv2 (1.34M images), which are comparable to
ImageNet1K but much less than CLIP-400M. (3) Fig. |
shows that performance improves with more pre-training
data from K400 [11], saturating after 75%. (4) Tab. 10
for the BCD task illustrates that pre-trained weights can

weights across three binary change detection datasets.

Pre-trained

LEVIR-CD

WHU-CD

CLCD

F1 IToU OA

F1 IoU OA

F1 IoU OA

Random Init

90.80 83.16 99.08

92.4085.88 9.41

71.5555.7196.11

AVA  191.27 83.9399.12(94.26 89.14 99.55|78.61 64.76 97.01
Charades [91.23 83.8799.11|94.05 88.77 99.54/|77.92 63.83 96.89
SSv2  |91.1683.7599.11|94.26 89.14 99.55|77.89 63.78 96.86
K400  |91.39 84.14 99.13|94.37 89.34 99.56|78.82 65.05 96.93

improve model performance. Besides, pre-training on the
K400 dataset still yields the best results, which is consistent
with the findings from the BDA task of Tab. 6 (see in our
paper).

Necessity of multiple perception frames. Using mul-
tiple perception frames improves the model’s capacity to
learn individual characteristics for each sub-task. Results in
Tab. 11 demonstrate that using multiple perception frames
leads to superior results, highlighting their effectiveness.

Table 11. Single vs. multiple perception frames on two semantic
change detection and one damage assessment datasets.

Perception] HRSCD \ SECOND \ xBD
Frame | FI mloU OA SeK| FI mloU OA SeK |Fpe Fg® Fgoerel

Single |72.61 67.80 82.14 25.61/61.09 72.00 86.94 21.34(85.03 75.29 79.00
Multiple {73.29 68.67 82.57 26.85(62.83 72.95 87.42 22.98/85.74 76.71 79.42

3. Detailed Architecture

As illustrated in Fig. 2, we provide a detailed architecture
of Change3D, which is designed to address multiple tasks,
including binary change detection, semantic change detec-
tion, building damage assessment, and change captioning.
Each task involves a video encoder and task-specific de-
coders. Specifically, the input consists of bi-temporal im-
ages I; and I, along with K perception frames that en-
hance temporal modeling by enriching inter-frame interac-
tions. These inputs are stacked into a video frame sequence
and processed through a multi-layer video encoder. The
video encoder, equipped with spatiotemporal modeling ca-
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Figure 2. Detailed architecture of Change3D. L;_4; denote the number of blocks in each layer.

pabilities, extracts robust features by integrating spatial de-
tails with temporal relationships, effectively capturing dy-
namic changes. The extracted features are then forwarded
to task-specific decoders. For change map prediction, the
framework leverages multi-layer perception features, while
the highest-level semantic features from the encoder’s final
layer are used for caption generation. Each decoder em-
ploys distinct parameters tailored to its respective task.

Change3D eliminates the need for complex, task-specific
change extractors, providing a unified framework for di-
verse change detection and captioning tasks.

4. Theoretical Analysis

To establish a comprehensive theoretical foundation and il-
lustrate the superiority of our proposed method, we present
a theoretical analysis of video models applied to change de-
tection and captioning tasks. Our approach diverges sig-
nificantly from existing methods, particularly in differential
feature extraction. Therefore, we provide a detailed analysis
of the image encoding and change extraction in the previous
paradigm, as well as the video encoding introduced in our
proposed paradigm.

Our proposed video models (i.e., video encoder) can be
conceptualized as a conditional probabilistic model that uti-
lizes the video encoder’s inter-frame relation modeling ca-
pabilities to capture changes from the entire input frame se-
quence. Our method treats bi-temporal images and percep-
tion frames as sequences of video frames. Through video
encoding, perception frames comprehensively capture con-
textual information among the images, thereby producing
perception features for effective change representation.

4.1. Previous Paradigm

In the previous paradigm, bi-temporal image pairs are

treated as separate inputs, each processed individually by

a shared-weight image encoder to extract spatial features,

followed by a dedicated change extractor. A decoder then

makes predictions, as detailed below:

* Image Encoding: Each image, I; and I, is indepen-
dently encoded to produce feature representations F} and
F: 2:

P(F1 | Il) and P(FQ ‘ IQ), (1)

where P(F; | I) and P(F» | I5) describe the conditional
probability distributions of extracting features F and F5
from images I; and I, respectively.

* Change Extraction: The differential features F- are de-
rived from a change extraction module:

P(Fc | F1, Fy), )

where this expression represents the conditional proba-
bility of obtaining the change features F-, given the ex-
tracted features F; and F5 from the two images.
Decoding: The decoder transforms the differential fea-
tures to change maps or captions O:

P(O| Fo), 3)

where P(O | F¢) denotes the conditional probability of
generating output O, such as a change map or caption,
based on the differential features F-.

Joint Probability: The joint probability for generating
outputs given the inputs is influenced by independent
image encoding and change extraction. Combined with
Eqgs. (1) to (3), we obtain:

P(O | I, L) = P(F1 | I) - P(F \ 12) -P(FC | Fl,Fg)
.P(O| Fo), @)



which describes the process of generating the output con-
ditioned on bi-temporal images, including the indepen-
dent extraction of features and change detection.

* Entropy: The entropy expression is defined as follows:

H(O,Fc, Fi, Fo)pey = H(O | Fo) + H(Fc | F1, F»)
+H(Fy | L)+ H(Fy | I),
4)

where each term represents the uncertainty at different
stages: the entropy of the output given the change fea-
tures, the entropy of the change features given the im-
age features, and the entropy of each image feature con-
ditioned on the respective input image.

* Mutual Information: The mutual information between
the input and differential features is defined as:

I(FC; Ila IQ)prev - H(FC)prev+H(I17 12)_H(FCv I17 I2)

(6)
which quantifies the information between the change fea-
tures Fo and the input images 17 and 1.

4.2. Our Paradigm

Our approach redefines change detection and captioning

tasks from a video modeling perspective. By incorporating

learnable perception frames between the bi-temporal im-

ages, a video encoder facilitates direct interaction between

the perception frame and the images to extract differences,
as follows:

* Video Encoding: The bi-temporal images I;, I incor-
porated with perception frames Ip are stacked along the
temporal dimension to construct a video, then a video
encoder processes it to produce differential features Fi,
which is formulated as follows:

P(Fcl|l,Ip, 1), (N

where this expression reflects the conditional probability
of obtaining the differential features F directly from the
sequence of input images and the perception frame, effec-
tively modeling the inter-frame relations for change ex-
traction.

¢ Decoding: A decoder is applied to predict the change
maps or captions O:

PO | Fo), ®)

where as before, describes the likelihood of generating
output O from the differential features Fc.

* Joint Probability: The joint probability benefits from
holistic video encoding, which incorporates perception
frames. Combined with Egs. (7) and (8), we get:

P(O ‘ Il?IP1[2) :P(FC|II7IP7IQ)P(O ‘ FC)7 (9)

where this formulation emphasizes the integrated pro-
cessing of temporal sequences through video encoding.
This approach connects input frames with differential
feature extraction seamlessly, eliminating the need for
change extractor designs.

* Entropy: The entropy expression is formulated as:

H(OaFC)our = H(O | FC)+H(FC | II;IP712)a (10)

which reflects the more efficient processing of informa-
tion with reduced uncertainty across the change detection
pipeline when using perception frames.

* Mutual Information: The mutual information between
the input and differential features is defined as:

I(FC;IlaI%IP)our = H(FC)uur + H(I17127]P)
— H(Fc, Iy, 12, Ip), (11)

illustrating enhanced mutual information and interdepen-
dence achieved by integrating perception frames within
video encoding.

4.3. Comparsion

* Probabilistic Model Comparison: Our paradigm pre-
dicts output more accurately due to the inclusion of per-
ception frames and holistic video encoding, which cap-
tures richer inter-frame information:

P(O | IlaIQ)prev < P(O | Il»IPaIZ)our (12)

* Entropy Comparison: Our approach shows reduced
overall entropy, indicating that the feature representations
are more deterministic and less uncertain, leading to more
reliable predictions.

H(OaFC7F1;F2)prev>H(07FC)our (13)

* Mutual Information Comparison: Our paradigm cap-
tures a higher amount of information between the in-
puts and features, promoting enhanced understanding of
changes as a result of direct interaction via video encod-
ing.

I(FC;117]2)prev <I(FC;113127IP)our (14)

4.4. Summary

Our proposed paradigm demonstrates significant improve-

ments in both probabilistic and information-theoretic mea-

sures. By incorporating perception frames into the video

encoding process, our approach achieves:

» Lower overall entropy, reflecting more deterministic fea-
ture representations.

* Higher mutual information, indicating better capture of
the complex interdependencies and information among
sequences.



* Enhanced joint probability model, delivering more accu-
rate and reliable predictions in change detection and cap-
tioning tasks.

These advantages underscore the theoretical and empir-
ical superiority of our paradigm, making it a simple yet
effective framework for change detection and captioning
tasks.

5. Qualitative Results

To qualitatively compare our method with previous ap-
proaches, we present comprehensive samples randomly se-
lected from eight datasets, as illustrated in Fig. 3-7. Sev-
eral key observations can be made from these samples:
(1) Fig. 3 shows that our proposed method outperforms
all compared methods on the binary change detection task
across various scenarios, including small, large, dense, and
sparse changes. (2) Fig. 4-5 demonstrate that Change3D
accurately identifies land cover types and produces clearer
boundaries. (3) Fig. 6 indicates that Change3D generates
more accurate and semantically consistent assessment maps
reflecting damage levels. (4) Fig. 7 shows that Change3D
provides more precise descriptions of the changes. These
achievements are primarily attributed to the effective fea-
ture interaction between learnable perception frames and
bi-temporal images in capturing differences, demonstrating
the effectiveness of Change3D for multiple change detec-
tion and captioning tasks.



LEVIR-CD

WHU-CD

CLCD

I I, G]fl?l:ltlllld ChangeFormer BIT Changer GASNet AMTNet EATDer Change3D

Figure 3. Qualitative comparison of several representative methods on three binary change detection datasets, i.e., LEVIR-CD, WHU-CD,
and CLCD. White represents a true positive, black is a true negative, indicates a false positive, and red is a false negative. Fewer
and red pixels represent better performance.



Truth ChangeMask SCDNet Bi-SRNet JFRNet DEFO Change3D

Figure 4. Qualitative comparison of several representative methods on the HRSCD dataset. Black represents non-change, red denotes
artificial surfaces, indicates agricultural areas, blue means forests, represents wetlands, and teal indicates water.

Ground  ChangeMask SCDNet  Bi-SRNet  JFRNet DEFO  Change3D

Figure 5. Qualitative comparison of several representative methods on the SECOND dataset. Black represents non-change, red denotes
low-vegetation, indicates non-vegetated ground surface, blue means trees, represents water, teal indicates buildings, and
denotes playgrounds.



I L Ground xBD ChangeOS ChangeOS DamFormer PCDASNet Change3D
Truth baseline -R50 -R101

Figure 6. Qualitative comparison of several representative methods on the xXBD dataset. Black represents non-change, white denotes non-
damage, indicates minor damage, represents major damage, red indicates destroyed.

Ground Truth: New buildings have been built around the cross road.
RSICCformer: Two rows of trees are along the road.

PromptCC: A road is built and many houses are built along the road.
SEN: are along the road.

Change3D: are around the road.

Ground Truth: A path has appeared across the trees.

RSICCformer: in the center of the scene.
PromptCC: through the forest and a path

SEN: A house appears in the center of the forest.
Change3D: in the center of the scene.

Ground Truth: A road is built at the bottom right corner of the scene.

RSICCformer: in the corner of the scene.
PromptCC: A road is built in the center of the scene.

SEN: Many building appears in the corner of the scene.
Change3D: at the corner of the scene.

Ground Truth: Massive houses along the roads appear in the desert.
RSICCformer: Many plants are removed on both sides of the roads.

PromptCC: along the roads.
SEN: The scene is the same as before.
Change3D: along the roads in the desert.

Change Captions

Figure 7. Qualitative comparison of several representative methods on the LEVIR-CC dataset. indicates correct captions, while red
indicates incorrect predictions.
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