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Supplementary Material

In this supplementary material, we provide the following
contents: 1) more implementation details of dataset, our
Exact and competing methods (§A), 2) the difference with
the previous prototype-based methods (§B), 3) additional
experimental results and analyses (§C).

A. Additional Implementation Details
A.1. Raw CAM Generation
As discussed in Section 3.1 in the main paper, the raw
fused CAM can be obtained by the dense tokens and
classifier weights. Inspired by previous works in natural
image[5, 13, 16], we adopt a theoretically equivalent and
much straightforward way to compute the raw fused CAM:

ŷ = GAP(Conv(Zdense
T )) + GAP(Conv(Zdense

S )), (1)

Laux
cls =

1

K

K∑
i=1

yi log σ(ŷi) + (1− yi) log(1− σ(ŷi)), (2)

M = ReLU(Conv(Zdense
T )) + ReLU(Conv(Zdense

S )). (3)

Here Conv(·) is the convolution layer to obtain Z
′ ∈

RNh·Nw×K and y denotes the class labels.

A.2. Dataset and Model Settings
Data Setting. The size of each sample in the PASTIS [7]
is 128× 128. We follow the original settings in TSViT [10]
that split each sample into 24× 24 patches to ensure that the
network can be trained efficiently on the available hardware.
In order to clearly visualize the activation area of CAM on
the original SITS sample, we spliced the small patches back
to 128 × 128 in Fig. 6 in main paper. Each sample in the
Germany [9] has a size of 24 × 24, and no additional pro-
cessing was applied. Since the multi-class labels are absent
in original PASTIS and Germany datasets, we employ the
following strategy to assign multi-class labels to each SITS:
If the number of masks for class k constitutes at least 1% of
the spatial size, the class k is deemed to be present in SITS.
To accommodate a large set of experiments, we only use
fold-1 among the five folds provided in PASTIS.
Model Setting. Following the settings in [10], we set the
vector dimension d to 128. The temporal encoder and spatial
encoder comprise 8 and 4 layers, respectively. The spatial
size of each patch is set to h = w = 2. For the spatial
clustering, we apply ℓ2 normalization to the pixel embed-
ding before measuring the similarity with prototypes. For the
temporal-aware affinity mining, we normalize the temporal-
to-class attention Ã to the range of [0,1] using softmax

Algorithm A Adaptation strategy 1.
Input: SITS I ∈ RT×C×H×W .
Parameter: cloud threshold thr.
Function: WSSS network f designed for natural images.
Output:single CAMM∈ RNh·Nw×K for SITS.

1: Initialize CAMs listM′ ← [ ];
2: for t← 1 to T do
3: if max(It) < thr then
4: ▷ cloud cover check

It ← concat(It, time position)
5: ▷ single temporal sequence input

6: Mt ← f(It);
7: M′ ←M′.append(Mt);
8: end if
9: end for

10: M← mean(M′) ▷ Average over T dimension

11: return M;

function and subsequently reweight the temporal sequence
embeddings by the normalized attention. Besides, we itera-
tively propagate the temporal-aware pairwise affinity among
neighboring pixels, with the iterations are set to 3. To derive
the final pseudo labels, we apply a global threshold to sepa-
rate the foreground and background in the CB-CAMs Y , as
following [11, 13].

A.3. Competing Methods and Modules
A.3.1. Adaptation of Competing Methods
For WSSS methods originally designed for natural images,
we attempt several adaptation strategies to enable their appli-
cation to SITS inputs, as follows:
Strategy 1. Given a SITS with dimensions [T,C,H,W ], we
partition it into T single-temporal samples, each with dimen-
sions [C + 1, H,W ]. The additional channel represents the
temporal position embedding, which is used to differenti-
ate distinct temporal samples. We then check each temporal
sample for cloud cover by evaluating the maximum signal in-
tensity, and removing any samples identified as cloudy. Each
remaining temporal sample is individually processed by the
WSSS networks to generate CAM. Finally, we average the
CAMs from temporal samples to obtain a single CAM for
SITS. The pseudo-code is attached in Algorithm A.
Strategy 2. We reconstruct the SITS into the 3D format
[T × C,H,W ] by merging the first and second dimensions.
Subsequently, we directly input the reconstructed data into



Method Strategy 1 Strategy 2

OA mIoU OA mIoU

MCTFormerCVPR’22 [13] 63.8 41.5 66.7 49.6
ViT-PCMECCV’22 [8] 65.1 46.3 69.3 53.2
TSCDAAAI’23 [14] 64.8 45.9 67.2 51.3
DuPLCVPR’24 [12] 63.4 40.7 65.5 48.7

Table 1. The performance of WSSS designed for natural images
under different adaptation strategies.

the WSSS model to obtain the CAM for SITS.

A.3.2. Adaptation of Competing Modules
Most of modules designed in natural image WSSS cannot be
applied in SITS scenario due to the distinct data processing
pipeline. We carefully select and reimplement four modules
that can be adapted to temporal-spatio network.
PAMR [1]. For this method, we incorporate the nGWP and
PAMR modules. We feed the score map output from tem-
poral encoder and spatial encoder into the nGWP module
to replace the convenient GAP layer. The PAMR module is
widely utilized in natural image WSSS. Here, we follow the
common practice that using low-level intensities as the input
to PAMR to refine the fused raw CAM.
TS-CAM [6]. Since this method performs semantic re-
allocation and semantic aggregation from a spatial perspec-
tive, we follow the original settings in [6] that compute
TS-CAM within the spatial encoder. Besides, we replace the
multi-class tokens in spatial encoder with single-class token
to maintain consistency with the original implementation.
SIPE [3]. This model computes the inter-pixel semantic
correlations in feature space, providing additional guidance
for extending the CAM. We reproduce SIPE in the temporal
embedding space to align with our proposed module.
FPR [2]. We calculate the region-level contrast loss and
pixel-level rectification loss proposed by FPR in the tem-
poral embedding space. Note that both SIPE and FPR use
prototypes, and we set the number of prototypes per class to
2 to better match the inherent characteristics of the SITS.

B. Remarks on difference with previous works
in natural images.

Existing prototype-based WSSS works. The prototype-
based methods have been explored in the WSSS for natural
images. Existing prototype-based WSSS works on natural
images primarily focus on the following aspects: 1) setting
a large number of prototypes (approximately 30 per class)
to capture diverse intra-class patterns and leveraging these
prototypes to reduce intra-class variation [2, 15, 17]. 2) per-
forming clustering on the batch-level and utilize the pro-
totypes obtained from the current batch to expand the raw
CAM [3–5].
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Figure 1. False discovery rate (FDR) of baseline and Exact. The
results are evaluated on the PASTIS train set for several major crop
types. Exact significantly reduce the FDR across different crops.

Difference with the previous works in natural images. Our
approach is different from existing prototype-based WSSS
methods in the following ways: 1) our objective is to ex-
plicitly capture compact intra-class patterns using a minimal
number of prototypes (Np = 2) and leverage the semantics
to enlarge the variations across different crops. 2) we perform
momentum updating at the dataset-level and conduct spatial
clustering in the most class-relative regions. 3) we discard
the classifier weights and directly utilize the well-updated
prototypes to generate the final CAMs.

Our method thoroughly considers the unique character-
istics of SITS and introduces tailored strategies, thereby
achieving impressive performance. By contrast, prototype-
based methods designed for natural images yield only lim-
ited improvements. As shown in the last column of Tab.1a in
the main paper, SIPE [3] and FPR [2] (two prototype-based
methods for natural images) bring only 0.6% and 1.5% im-
provements compared to baseline, while our Exact achieves
a substantial 6.1% enhancement.

C. Additional Experiments and Analyses

Due to constraints on page space, we are unable to present all
experimental results within the main paper. In this section,
we provide more experimental results and analyses both
quantitatively and qualitatively to support the main paper.

C.1. Different Adaptation Strategies.

We evaluate the performance of the WSSS under different
adaptation strategies on PASTIS train set, the results are
shown in Tab. 1. It can be observed that the WSSS models
generally perform better under Strategy 2. This is because
merging the temporal dimensions during input allows the
model to implicitly focus on pivotal temporal clips, thereby
mitigating the adverse effects of anomalous temporal peri-
ods to some extent. To eliminate the influence of irrelevant



Method Sup. OA mIoU O.ratio m.ratio

TSViT [10] G 95.0 84.8 100% 100%

baseline

P

84.7 73.6 89% 87%
+PAMRCVPR’20 [1] 85.4 74.8 90% 88%
+TS-CAMICCV’21 [6] 82.6 71.9 87% 85%
+SIPECVPR’22 [3] 84.2 73.1 89% 86%
+FPRICCV’23 [2] 84.5 73.9 89% 87%
+ours-Exact 90.1 ↑ 5.4 79.9 ↑ 6.3 95% 94%

Table 2. The TSViT segmentation network performance trained
with pseudo labels on Germany test set. All pseudo labels are
consistent with those described in the main paper. O.ratio and
m.ratio refer to the proportion of OA and mIoU between weakly
supervised and fully supervised of segmentation performance.

Method Sup. OA mIoU O.ratio m.ratio

U-TAE [7] G 82.9 62.4 100% 100%

baseline

P

76.0 55.5 92% 89%
+PAMRCVPR’20 [1] 77.5 56.7 93% 91%
+TS-CAMICCV’21 [6] 75.3 54.2 91% 87%
+SIPECVPR’22 [3] 76.4 56.1 92% 90%
+FPRICCV’23 [2] 76.8 56.4 93% 90%
+ours-Exact 82.1 ↑ 6.1 60.7 ↑ 5.2 99% 97%

Table 3. The U-TAE segmentation network performance trained
with pseudo labels on PASTIS test set. All pseudo labels are
consistent with those described in the main paper.

Method Lcbl Ltap CB-CAM OA mIoU

baseline 81.2 69.5
" 81.9 71.6

" 82.4 72.3
" 82.2 72.5

" " 83.0 73.4
" " 82.8 73.3

" " 83.2 73.8
ours-Exact " " " 84.1 75.6

Table 4. Additional ablation results of different components.

factors, we choose the Strategy 2 in the main paper to reim-
plement the WSSS method designed for natural images.

C.2. More Comparisons

Effect of our method on correcting false positives. We
evaluate the false discovery rate (FDR) for each category of
pseudo-labels to quantitatively analyze the effectiveness of
our method in mitigating the over-activation regions. The

µl µh OA mIoU

0.15 0.40 83.8 75.2
0.20 0.35 83.2 75.0
0.20 0.40 84.1 75.6
0.20 0.45 83.3 75.1
0.25 0.40 83.0 75.3

(a) Filtering thresholds µ.

λ1 λ2 OA mIoU

0.005 0.015 83.5 75.0
0.01 0.015 84.1 75.6
0.01 0.010 83.7 75.3
0.01 0.02 83.9 74.9
0.015 0.015 84.0 75.2

(b) Loss coefficients λ.

Table 5. Effect of the filtering thresholds and loss coefficients.

FDR can be computed as follows:

FDR =
FP

FP+ TP
(4)

here FP and TP denote the number of false positive and true
positive pixel pseudo labels for each class. We compare the
FDR of pseudo labels generated by TSViT-CAMs (baseline)
and ours Exact, the results are shown in Fig. 1. It can be
seen that due to the noise perturbations, the baseline exhibits
more false positive pixels, leading to inferior perceive ability.
Our method significantly suppresses erroneous activation
regions and reduces the FDR across different crops, thereby
delineating the crop regions more precisely.
Segmentation results on Germany dataset. We further val-
idate the performance of segmentation network trained by
different pseudo labels on the Germany [9] dataset. As in
the main paper, we employ the original TSViT [10] with
a segmentation decoder as our SITS semantic segmenta-
tion network. As shown in Tab. 2, training the segmentation
network with Exact-generated labels achieves the best re-
sults, improving the baseline by 5.4% in OA and 6.3% in
mIoU, respectively. This indicates that our method can show
consistently superior performance across various SITS crop
mapping benchmarks.
Segmentation results for other SITS segmentation net-
work. To further demonstrate the superiority of our method,
we replace the TSViT with the U-TAE [7] as our semantic
segmentation network and evaluate its performance under
various pseudo labels generated by different methods. The
results are shown in Tab. 3. Notably, using the pseudo labels
generated by Exact, U-TAE can achieve 99% and 97% of
the fully supervised OA and mIoU respectively, showcasing
the impressive performance of our method. These findings
indicate that training lightweight network with the pseudo
labels generated by our method has the potential to achieve
performance comparable to its fully supervised paradigm.

C.3. More Ablation Studies
We provide more ablation experiments in this section, and
all results are reported on the PASTIS train set.
Comprehensive ablation results on proposed modules.
In Tab. 4, we present additional ablation results of our pro-
posed modules. It can be observed that our proposed mod-
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Figure 2. Qualitative results between baseline TSViT-CAM and CB-CAMs derived by Exact on Germany dataset. Left: CAMs
comparisons. Right: Semantic segmentation comparison results. The stars represent the corresponding activation category.

2000 4000 5000 6000

OA 82.0 84.1 83.4 83.0
mIoU 72.1 75.6 75.2 74.9

(a) Warm up stages.

w/o Neg Neg

OA 83.3 84.1
mIoU 74.6 75.6

(b) Negative set.

Table 6. Effect of the warm-up stages and negative prototype
set. w/o refers to without.

ules synergize effectively, as mentioned in the main paper.
Lcbl regularizes the embedding space, facilitating the global
perception of the space-time clues to crop regions. Simulta-
neously, Ltap mitigates anomalous semantics while indirectly
reinforcing the stability of spatial clustering process.
Effect of filtering thresholds µ and loss coefficients λi.
In Sec. 3.2 of the main paper, we employ two thresholds
(µl, µh) to filter out the most class-relative regions, both
positively and negatively, as follows:

M̂ =


0, ifM≤ µl,

1, ifM≥ µh,

ignore, otherwise.

(5)

Tab. 5a shows the performance variations under different
filtering thresholds. As we can see, an excessively stringent
threshold may impede the ability to capture the patterns of
crops, whereas a lenient threshold may introduce undesired
noise to the prototypes. In addition, we report the impact
of different loss coefficients on accuracy, the results are
presented in Tab. 5b.
Effect of the warm up stage. The prototype learning relies
on the raw CAM’s accurate perception of parcel objects.
Since the network lacks the capability to perceive parcel
objects at the early training stages, prematurely introducing
prototype learning and feature space shaping may result in
gradient explosion. Tab. 6a shows the impact on the warm up
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Figure 3. Quantitative and qualitative results of pseudo labels
with different Np. The red dot ◦ and black cross × in qualitative
results denote the false negative and the false positive activations,
respectively.

Figure 4. Single satellite image extracted by temporal-to-class
attention. The line chart represents the temporal-to-class attention,
and the red dots correspond to the satellite images shown below.

stages for the model performance. We can see that starting
the prototype learning and clue-based contrastive learning at
4000 iterations can achieve the best performance. While an
excessively prolonged warm-up stage may cause the model
to memorize noise perturbations, thereby hindering the shap-
ing of the feature space.
Effect of the negative set. In the main paper, we intro-



duce a positive prototype set and a negative prototype set to
capture class-relevant positive and negative patterns, respec-
tively. We present additional quantitative results in Tab. 6b to
demonstrate the effectiveness of the negative set. The results
indicate that the negative class-relevant semantics can com-
plement with positive patterns, thereby assisting the model
in eliminating erroneous crop regions.
Adverse impact of increasing the number of prototypes.
As discussed in the main paper, an excessive number of
prototypes may impair the model’s ability to perceive the
global unified semantics of the crop parcel. In Fig. 3, we
present both quantitative and qualitative experimental results
to illustrate the impact of increasing the number of proto-
types. As we can see, the prototypes’ ability to perceive crop
parcels declines sharply as Np increases to 10 (75.6% vs.
71.8% mIoU). This is mainly due to the large Np compels the
prototypes to capture local discriminative patterns, thereby
resulting in a severe under-activation issue.

C.4. Additional Qualitative Results
Low-level mapping of the temporal-to-class attention. In
order to intuitively demonstrate the effect of temporal-to-
class attention on the perception of temporal sequences, we
list the satellite images under different attention scores. As
shown in Fig. 4, temporal clips with high attention scores
contain pivotal information for crop recognition, whereas
those low scores are associated with anomalous temporal
periods (e.g., cloud cover, barren land). Therefore, explicitly
emphasizing the contributions of different temporal clips
to crop recognition can mitigate the confusion arising from
anomalous semantics.
Visual comparison of CAMs and segmentation results.
We additionally provide visual comparison between the
TSViT-CAMs (baseline) and the proposed CB-CAMs on
Germany dataset, as shown in Fig. 2. The first four columns
show the visualization of the CAMs. One can observe that
the CB-CAMs generated by Exact are capable of accurately
delineating the crop regions. Therefore, the semantic seg-
mentation model tends to show more powerful perceptual
capability under Exact-generated pseudo labels’ supervision.
Visual comparison of pseudo labels. In Fig. 5, we show
the pseudo labels derived by TSViT-CAMs and CB-CAMs
on both PASTIS and Germany train set. Consistent with
the main paper, we observe that Exact remarkably addresses
both under- and over-activation issues in the baseline, thereby
providing more reliable supervision for SITS semantic seg-
mentation network.
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(a) PASTIS train set (b) Germany train set

Figure 5. Qualitative comparison of pseudo labels among baseline TSViT-CAMs and ours Exact on PASTIS and Germany train set.
The red dot ◦ and black cross × in qualitative results denote the false negative and the false positive activations, respectively.
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