
A. Appendix
A.1.
A.2. Dataset and Training Details
The CIFAR-100 dataset [20] consists of 100 categories with
60,000 32 × 32 color images, where 50,000 images are
allocated for training and 10,000 images for testing. The
Dermnet dataset [1] includes 23 categories with a total of
19,500 images, where 15,500 images are allocated for train-
ing and 4,000 images for testing. Since the images have
varying sizes, we cropped them to a size of 64×64 pixels.
The Tiny Imagenet datasets [22] has 100000 images of 200
classes. Each class has 500 training images, 50 validation
images, and 50 test images. The member dataset we use
is the splited training datatset of target client and the non-
member datatset is consist of the one-tenth hold-out test
dataset and the sum of one-tenth training datset of the other
clients. In the IID setting, we uniformly and randomly dis-
tribute the samples of each class to each client. In the Non-
IID setting, we make the labels of each client’s training data
follow the Dirichlet distribution[15]. For image generative
task with diffusion model, we use 10 classes for training
model and attacking membership privacy. We run image
classification tasks on AlexNet and ResNet18 with NVIDIA
2060 GPU and run image generation task on laten diffusion
model with NVIDIA A100 GPU. The training parameters
details and dataset splited method of federated learning are
shown in Table 3.

A.3. Defense Methods
A.3.1. Gradient Perturbation
Client-level Differential Privacy. Differential Privacy
(DP) [8, 49] hides the membership of individual data by
clipping the gradients at the client level and adding Gaus-
sian noise. The magnitude of the noise controls the strength
of privacy protection: the larger the noise, the better the pri-
vacy protection, but the worse the model’s performance. In
the experiment, we set the DP noise standard deviation from
0.01 to 0.5 to achieve different levels of defense.
Gradient Quantization. Gradient quantization [12, 30] is
a technique used to reduce the precision of gradient updates
and mitigate information leakage. This algorithm quantizes
the values of gradients into discrete approximations, reduc-
ing the precision of the gradients. By reducing the detailed
information in the gradients, it lowers the sensitivity to in-
dividual data and improves privacy protection. The number
of bits used for quantization affects the privacy protection
effectiveness, where fewer bits introduce larger gradient er-
rors but provide better privacy protection. In the experi-
ment, we set the number of bits from 1 to 10 to achieve
different levels of defense.
Gradient Sparsification. The gradient sparsification algo-
rithm [11, 35, 40] reduces the risk of information leakage

by setting smaller absolute value elements in the gradient to
zero. The fewer non-zero elements in the gradient, the less
privacy leakage occurs. In the experiment, we set the rate
of gradient elements sparsified from 0.1 to 0.99 to achieve
different levels of defense.

A.3.2. Data Replacement
MixUp. MixUp method [9, 47] trains neural networks on
composite images created via linear combination of image
pairs. It has been shown to improve the generalization of the
neural network and stabilizes the training. The coefficient
of the linear combination is sampled from a Beta Distribu-
tion. We set the Beta Distribution parameter from 1e-5 to
1e5 to achieve different levels of defense.
Data Augmentation. Data Augmentation [37] includes
cropping, shifting, rotating, flipping, shearing, and color jit-
tering. We combine these augmentation schemes in differ-
ent amounts to achieve different levels of defense.
Data Sampling. In each local training epoch, clients may
choose to sample a portion of the training data instead of
using the entire dataset [23]. We set the portion from 0.1 to
1.0 to achieve different levels of defense.

A.4. Evaluation Metrics
Utility loss (Test error rate). In this paper, we quantify
the utility loss by using the test error as a metric. The test
error measures the accuracy of the model on a separate test
dataset, where a lower test error indicates better model util-
ity. The worst possible test error rate is 1, which means that
the model makes incorrect predictions for all instances in
the test dataset.

Privacy Leakage (AUC and attack TPR). We consider
attacks as a binary classification task, and the TPR@FPR of
the AUC can be used to measure the accuracy of the clas-
sification, which represents the effectiveness of the attack.
TPR@low FPR is a metric recently proposed for measuring
MIA (Membership Inference Attack). It focuses more on
the data that is most susceptible to attacks, and researchers
believe that using it as a metric can better characterize pri-
vacy protection in worst-case scenarios.

TPR (True Positive Rate) and FPR (False Positive Rate)
are two important metrics used to evaluate the performance
of binary classification models, such as machine learning
algorithms or diagnostic tests. They are calculated as fol-
lows:

TPR = TP / (TP + FN)

FPR = FP / (FP + TN)

where: TP (True Positives) represents the number of pos-
itive instances correctly classified as positive. FN (False
Negatives) represents the number of positive instances in-
correctly classified as negative. FP (False Positives) repre-
sents the number of negative instances incorrectly classified



Table 3: Training parameters for federated learning in this paper

Dataset CIFAR100 Dermnet Tiny ImageNet

Models AlexNet, ResNet18 AlexNet, ResNet18 Laten Diffusion Model
Communication epoch 300 300 20

Optimizer SGD SGD Adam
Initial learning rate 0.1 0.1 0.001
Learning rate decay 0.99 at each epoch 0.99 at each epoch Adaptive
Number of clients 10 10 10

Training set size for one client 5000 1500 1000
Testing set size 10000 4500 1000

(a) AlexNet-CIFAR100 Blackbox-Loss (b) AlexNet-CIFAR100 Grad-Cosine (c) ResNet18-CIFAR100 Blackbox-Loss (d) ResNet18-CIFAR100 Grad-Cosine

(e) AlexNet-CIFAR100 Loss-Series (f) AlexNet-CIFAR100 Avg-Cosine (g) ResNet18-CIFAR100 Loss-Series (h) ResNet18-CIFAR100 Avg-Cosine

(i) AlexNet-CIFAR100 FedMIA-I (j) AlexNet-CIFAR100 FedMIA-II (k) ResNet18-CIFAR100 FedMIA-I (l) ResNet18-CIFAR100 FedMIA-II

Figure 6: Figure (a)-(f) demonstrate the TPR@FPR=0.001 of various defence (including client-level differential privacy
(green line) [8], sparsification (blue line) [35], mixup (purple line) [47], data sampling (red line) [23], data augmentation (deep
blue line) and gradient, combination of data augmentation and sampling (yellow line)) under three attacks (Blackbox-Loss
[44], Loss-Series [10], FedMIA-I, Grad-Cosine, Avg-Cosine [24] and FedMIA-II are first, second and third row respectively).
A larger hypervolume (HV) [51] indicates a better Pareto front of privacy and utility.

as positive. TN (True Negatives) represents the number of
negative instances correctly classified as negative.

Hypervolume HV (). In order to compare Pareto fronts
achieved by different defense algorithms, we need to quan-



tify the quality of a Pareto front. To this end, we adopt the
hypervolume (HV) indicator [51] as the metric to evaluate
Pareto fronts. Definition 1 formally defines the hypervol-
ume.

Definition 1 (Hypervolume Indicator). Let z =
{z1, · · · , zm} be a reference point that is an upper
bound of the objectives Y = {y1, . . . , ym}, such that
yi ≤ zi, ∀i ∈ [m]. the hypervolume indicator HVz(Y )
measures the region between Y and z and is formulated as:

HVz(Y ) = Λ

({
q ∈ Rm

∣∣q ∈
m∏
i=1

[yi, zi]

})
(13)

where Λ(·) refers to the Lebesgue measure.

We set the reference point z of privacy leakage and utility
loss to be 1 and 100% respectively.

B. More experiment
Figure 6 demonstrates the privacy-utility tradeoff against
different attacks under various defense methods.

C. Proof of Theorem 1
Theorem 2. Given the threshold δ, let Vt be the member
sets estimated by Λ̂t and δ in communication round t. Let
Ṽ be the member sets estimated by Λ̃ and δ. Then we have

Ṽ ⊂ (V1 ∪ · · · ∪ VT ). (14)

Proof. We employ proof by contradiction to establish the
theorem. Assume there exists an element v ∈ V such that
v /∈ (V1 ∪ · · · ∪ VT ).

By definition, the set Vt is defined as

Vt = {v | v ∈ V, Λ̂t(v) ≥ δ},

which represents the set of members determined by Eq.
(4) in the main text. Additionally, let Vn

t denote the non-
member set determined by Eq. (4).

Now, consider an element v /∈ (V1 ∪ · · · ∪ VT ). This
implies that Λ̂t(v) < δ for all t. Consequently, we have:

Λ̃(v) =
1

T

T∑
t=1

Λ̂t(v) < δ.

This result indicates that v /∈ V , which contradicts the as-
sumption that v ∈ V .

Thus, the assumption leads to a contradiction, and the
proof is complete.
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