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Tensor Dimension Meaning

II 3× 224× 224 Image
IP 3× 2048 Point cloud
F2D 512× 7× 7 2D feature
F3D 512× 64 3D feature
FS 113× 512 Spatial feature
FSP 113× 4096 Project FS to a semantic space
FT NL × 4096 Textual feature
FA 113× 512 Affordance feature
O 2048× 1 3D object affordance

Table 1. Description of tensors. We present the dimensions and
meanings of the input and output tensors in each component of the
model. Here we do not specify the batch size.

A. Implementation Details

Dataset Details. In our dataset, the image resolutions vary,
while the point clouds have been post-processed to ensure
each object contains exactly 2048 points. In the seen setting,
both the training and testing sets contain 23 object categories.
In the unseen setting, there are 17 object categories in the
training set and 6 categories in the testing set.
• In the seen setting, the object categories in both the train-

ing and testing sets are: bag, bed, bottle, bowl, chair, clock,
dishwasher, display, door, earphone, faucet, hat, keyboard,
knife, laptop, microwave, mug, refrigerator, scissors, stor-
age furniture, table, trashcan, and vase.

• In the unseen setting, the object categories in the train-
ing set are: bag, bottle, bowl, chair, clock, display, door,
earphone, faucet, hat, keyboard, knife, mug, refrigerator,
storage furniture, table, and trashcan. The object categories
in the testing set are: bed, dishwasher, laptop, microwave,
scissors, and vase.

Method Details. For data augmentation during training, we
randomly crop and resize the input images to 3× 224× 224.
Then both the images and point clouds are normalized. For
the 2D vision encoder, the 2D features it outputs are reshaped
into 512 × 49 and fused with the 3D features. For the 3D
vision encoder, we use 3 set abstraction layers with multi-
scale grouping to extract point-wise features, respectively
sampling 512, 128, and 64 points per layer. The embedding
dimension is set to 512. For the vision-language model, the
base model is vicuna-7b[8] and its hidden size is set to 4096.
The token length (NL) varies with the instructions, and its
maximum length is capped at 32. The weight of focal loss
(ωf ) and dice loss (ωd) are both set to 1. The dimensions of
tensors in the whole pipeline are shown in the Tab. 1.
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Figure 1. Different shapes. The objects in the instructions, images
and point clouds belong to the same category but have different
geometries.
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Figure 2. Different categories. The objects in the instructions,
images and point clouds have different categories and geometries.
(Row 1:) The category of object in the instruction and image is
“refrigerator”, while the object of point cloud is “storage furniture”.
(Row 2:) The category of object in the instruction and image is
“bag”, while the object of point cloud is “hat”.

B. Additional Experiments

B.1. Results
Different Backbones. To evaluate the impact of different
backbones on model performance, we select various back-
bone networks. For 2D vision encoder, since the standard
LLaVA[2–4] uses the CLIP image encoder, we compare
CLIP-ViT[6] with the ResNet18[1] we utilize. For 3D vi-
sion encoder, we additionally select PointConvFormer[7] for
comparison. We calculate the FLOPs and parameter counts
of different backbones: ResNet18 (1.82 GFLOPs, 11.18 M
params), PointNet++ (4.94 GFLOPs, 0.51 M params), CLIP-
ViT (51.90 GFLOPs, 202.05 M params), PointConvFormer
(17.06 GFLOP, 2.32 M params). As shown in the Tab. 2,
although larger backbone networks generally lead to bet-
ter model performance, the improvement is not significant.
Therefore, to make the model more efficient and lightweight,
we choose ResNet18 and PointNet++[5] as the final back-
bones.



Setting Metrics Full-view Partial-view Rotation-view
Baseline ViT PCF Baseline ViT PCF Baseline ViT PCF

Seen
AUC ↑ 0.8895 0.8986 0.8929 0.8478 0.8516 0.8497 0.7823 0.7832 0.7829
IOU ↑ 0.2123 0.2211 0.2102 0.1755 0.1782 0.1768 0.1161 0.1170 0.1165
SIM ↑ 0.6102 0.6183 0.6114 0.5928 0.5984 0.5950 0.5191 0.5206 0.5207

MAE ↓ 0.0816 0.0784 0.0815 0.0921 0.0898 0.0915 0.1182 0.1159 0.1172

Unseen
AUC ↑ 0.7741 0.7849 0.7767 0.7602 0.7676 0.7611 0.6303 0.6340 0.6311
IOU ↑ 0.0903 0.0984 0.0893 0.0724 0.0769 0.0725 0.0415 0.0477 0.0438
SIM ↑ 0.4089 0.4170 0.4099 0.4144 0.4198 0.4140 0.3842 0.3869 0.3841

MAE ↓ 0.0945 0.0878 0.0939 0.1183 0.1042 0.1174 0.1398 0.1358 0.1395

Table 2. Different backbones. Here we present the results of models using different backbones under various views and settings. Among
them, “Baseline” refers to using ResNet18 and PointNet++ as the backbone, “ViT” refers to using CLIP-ViT and PointNet++ as the backbone,
and “PCF” refers to using ResNet18 and PointConvFormer as the backbone.

Setting Metrics Full-view Partial-view Rotation-view
1 2 3 1 2 3 1 2 3

Seen
AUC ↑ 0.8786 0.8895 0.8880 0.8435 0.8478 0.8462 0.7531 0.7823 0.7842
IOU ↑ 0.2055 0.2123 0.2098 0.1733 0.1755 0.1803 0.1008 0.1161 0.1188
SIM ↑ 0.5958 0.6102 0.6115 0.5908 0.5928 0.5919 0.5006 0.5191 0.5196

MAE ↓ 0.0861 0.0816 0.0824 0.0923 0.0921 0.0940 0.1262 0.1182 0.1204

Unseen
AUC ↑ 0.7598 0.7741 0.7858 0.7586 0.7602 0.7631 0.5955 0.6303 0.6394
IOU ↑ 0.0879 0.0903 0.0910 0.0698 0.0724 0.0723 0.0394 0.0415 0.0457
SIM ↑ 0.3911 0.4089 0.4004 0.4105 0.4144 0.4135 0.3807 0.3842 0.3860

MAE ↓ 0.1012 0.0945 0.0955 0.1334 0.1183 0.1166 0.1436 0.1398 0.1421

Table 3. Different pairings. We show the results when the number of pairings varies under different views and settings in detail. One image
could be paired with multiple point clouds during training. The number of pairings has an influence on the model performance.

Different Pairings. Since the images and point clouds in
the dataset come from different physical instances, matching
a single image with multiple point clouds can increase the
diversity of the data. Here, the number of pairings is set to
1, 2, and 3, with the results shown in the Tab. 3. When the
number of pairings is 3, the batch size is set to 4 due to mem-
ory limitations. And the training time has increased. From
the results in the table, it can be seen that the model perfor-
mance improves significantly when the number of pairings
is changed from 1 to 2, while the performance improvement
from 2 to 3 pairings is much smaller and even some metrics
even decrease. Considering the above results, we finally set
the number of pairings to 2 in our implementation.

B.2. Visualization

Mismatch. What will happen when the objects in the instruc-
tion, image and point cloud are different? To explore this
issue, we perform experiments with different shapes or cate-
gorios. As shown in the Fig. 1 and Fig. 2, they indicate that
the model has mapped the cross-category invariance between
affordance and geometric shapes, enabling generalization
to new geometric instances. However, when the object cate-
gories differ, the model tends to follow the instructions and
does not predict affordances for different objects.
Multiplicity. A single object can have multiple affordances.
To evaluate multiplicity, Fig. 4 shows the different results that
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A person is opening 
a dishwasher filled 
with clean dishes.

The person is 
interacting with the 
open microwave by 
pressing a button.

Figure 3. Failure Cases. In the rotation-view and unseen setting,
(Row 1) the model fails to ground the dishwasher door handle and
only ground the door itself; (Row 2) the model is not very effective
at grounding in small affordance regions, such as the buttons on the
microwave.

the model predicts based on the same image and point cloud
when given different language instructions. From the results,
it can be seen that the model performs well in instruction-
following, which allows it to interact with users and adapt to
different scenarios.
Limitations. The model has limitations with rotated views
in unseen scenarios, as shown in the Fig. 3. This may be
because the model needs to be designed to extract features
which are invariant to rotation and symmetry for this situa-
tion. Additionally, the model has a limited understanding of
fine-grained geometric parts and may be necessary to further
increase the receptive field.



Knife | cut / grasp

Dishwasher | open / contain

Bottle | open / wrapgrasp

Chair | move / sit

Laptop | press / display

Bed | sit / lay
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Figure 4. Affordance multiplicity. We keep the image and point cloud inputs unchanged while modifying the language instructions to
demonstrate the model’s instruction-following capability. In the figure, we have omitted the instructions, retaining only the object and
different affordance names.
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