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Supplementary Material

1. Detail for Motion-Based Head Imitation
Loss Function for training stage 1 is as follows:

Ls1 = wperLper + wadvLadv + wcycLcyc, (1)

where Lper is perceptual loss, Ladv is GAN loss, and Lcyc

is cycle consistency loss proposed in VASA-1 [5] for disen-
tangling between motion and 3D appearance features.

Model details. The model architectures of face encoder,
face decoder, motion encoder and motion flow estimator are
shown in Fig. 1.

Figure 1. Model details for Section 3.1.

2. Ablation Study
Motion Memory Bank. In stage 2, we remove the
verbal/non-verbal motion memory banks from the interac-
tive motion guider, and directly use the dyadic audio feature
after several MLP layers as the condition for the motion-
attention layer.This leads to noticeable lip motion inconsis-
tencies with ground-truth (Fig. 2). The experiment result of
different memory bank size is shown in Tab. 1, it shows that
as the memory bank size increases, the generation quality
does not increase significantly.

Figure 2. Ablation study on motion memory banks.

Dataset Size. Experiments on varying-scale datasets
(Tab. 1) show large-scale data better captures subtle facial
expressions and head movements, though weakly correlated
with speech.

Hybrid Facial Representation. We change the input
to Em in stage 1 from our carefully-designed hybrid facial

Methods SSIM↑ PSNR↑ FID↓ SyncScore↑ LPIPS↓ CSIM↑ SID↑ Var↑

INFP 0.834 31.562 15.727 7.188 0.257 0.904 2.613 2.386

10h data 0.811 27.310 19.871 7.092 0.288 0.852 1.861 1.776
100h data 0.830 30.639 15.802 7.163 0.270 0.894 2.437 2.119

d=128 0.828 30.488 16.091 6.782 0.269 0.812 2.270 1.851
d=1024 0.830 32.011 15.722 7.143 0.260 0.909 2.609 2.384

GT 1.000 N/A 0.000 7.261 0.000 0.967 2.891 2.435

Table 1. Ablation study on dataset size and memory bank size.

representation to the original intact image or 2D landmarks
map. Results are shown in Fig. 3. It can be seen that there is
degradation in generation quality and a leakage of appear-
ance information using original image or landmarks map as
input.

Figure 3. Ablation study on the input to the motion encoder.

3. Inference Speed and Latency

Our method is extremely fast with float-16 precision (for a
3s input audio clip, the entire inference process takes only
0.5s on an L20 GPU). Therefore, we can adopt a sliding-
window strategy and reduce the length of each audio seg-
ment to control the latency within an acceptable range.

4. Additional Qualitative Results

Since our method can naturally generalize to the task of lis-
tening head and talking head generation, we directly use
our model without any modification to conduct additional
experiments.

We first compare our framework with SOTA listening
head generation methods, including L2L [3], RLHG [8] and
DIM [4]. ViCo [8] is selected as the benchmark. Results are
shown in Fig. 4 (a), which demonstrate that INFP achieves
more expressive and diverse motions.

For talking head generation, we select SadTalker[6],
AniTalker[2], and EchoMimic[1] as comparing methods.
HDTF [7] is selected as the benchmark. Results are shown
in Fig. 4 (b), which reveal that INFP can generate more ac-
curate lip movement.



Figure 4. Qualitative comparisons with Listening Generation methods (a) and Talking-Head Generation methods (b).
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