
Interpretable Image Classification via Non-parametric Part Prototype Learning

Supplementary Material

This document provides more implementation and ex-
perimental details of our framework, as well as more quan-
titative and qualitative results:
• Section A provides more implementation details
• Section B describes additional details on experiments
• Section C provides more experimental results
• Section D provides additional visualizations in compari-

son with previous works

A. Implementation Details

During the first stage of training, given the patch tokens f →
RBhw→D that encodes a batch of images, the foreground ex-
traction module ω estimates a binary mask M → {0, 1}Bhw

where a value of 1 indicates that the corresponding patch
token is in the foreground of the input image it belongs to.
With this, the patch tokens f c that belongs to each class c in
a batch of training samples can be defined as:

f c := {fi | Mi = 1,Yi = c},
where Y → {c1, c2, ...}Bhw denotes the class label of

the input image that each patch token belongs to. The fore-
ground extractor ω can be implemented using various off-
the-shelf methods, such as PaPr [26], Principle Component
Analysis [27] and Attention Rollout [46]. We ablate these
methods in Table 3. In addition, we adopt cosine similar-
ity to compute similarity S between the patch tokens f and
prototypes P:

S =
f↑P

↑f↑2 ↑P↑2
.

During the first stage of training, we initialize the proto-
types from N (0.0, 0.02) and the modulation weights with
wc

k
= 0.2. We provide an overview of our training pro-

cedure in Algorithm 1. When adapting to concept learn-
ing, we construct the concept bottleneck layer by replacing
the modulation weights w with two fully connected layers,
where the output dimension of the first layer equal to the
number of concepts associated with all classes.
Distinctiveness and Comprehensiveness Scores. The cal-
culation of Comprehensiveness Score requires the ground
truth foreground masks of test images, while the calculation
of Distinctiveness Score is label-free. We provide Python-
like pseudo-code for calculating these two scores in Algo-
rithm 2 and Algorithm 3.

B. Experimental Details

Implementations. We train our network with a batch size
of 128 and input size of 224. For experiments on all

Algorithm 1 Prototype Learning and Backbone Fine-tuning
Require: Training set X , nEpochs, ViT backbone F

1: Initialize prototypes P and modulation vector w with
P ↓ N (0.0, 0.02) and wc

k
= 0.2

2: for t → {1, . . . , nEpochs} do

3: Randomly split X into mini-batches
4: for (X,y) → {X1, . . . } do

5: f = reshape(F(X)) → RBhw→D

6: M = ω(f ,X) → {0, 1}Bhw

7: S = reshape(Sim(f ,P)) → RBhw→N→K

8: for c → unique(y) do

9: Get Sc and f c by indexing S, f with M, y
10: Ac,↓ = sinkhorn knopp(Sc)
11: if first training stage then

12: Pc ↔ εPc + (1↗ ε)(Ac,↓)↑f c

13: end if

14: end for

15: g = MaxPool(reshape(S)) → RN→K

16: logits = compute logits(g, w) → RN

17: if second training stage then

18: Compute loss Lxe(logits,y)
19: Compute loss LPPC(S,A)
20: Minimize loss by updating F
21: end if

22: end for

23: end for

three datasets, We trained previous Prototypical-Part Net-
works by setting the number of part prototypes per class
K = {3, 5}, and the number of added Vision Transformer
blocks m = 3. Specifically, each identity block is copied
from the 4th, 8th and 12th Transformer blocks in the origi-
nal sequence, with the weights of attention projection layer
and the second fully-connected layer set of zero, each in-
serted after the block they are copied from. We use a learn-
ing rate of 1e ↗ 4 to train these blocks while freezing the
rest of the backbone during the joint learning phase of these
methods. All the other hyperparameters are the same as the
ones in original implementations.
Datasets. CUB-200-2011 contains keypoint annotation of
15 parts and foreground segmentation masks for each image
besides image-level class levels, which are used to calculate
the Consistency score proposed in [19] and our Compre-
hensiveness score. We followed ProtoPNet [7] to perform
offline data augmentation when training each method. Each
image is augmented 40 times with random rotation, random
skew, random shear and horizontal flip. For evaluation on
Stanford Cars and Stanford Dogs, we did not perform any

Methods ViT-B ViT-S

ProtoPNet (K=3) 86.47 78.16
ProtoPNet (K=5) 86.75 79.51

TesNet (K=3) 87.33 80.97
TesNet (K=5) 87.15 82.55
EvalProtoPNet 91.20 83.40
EvalProtoPNet 91.46 87.09

Ours (K=3) 91.29 85.52
Ours (K=5) 93.63 86.10

Table 1. Classification results on Stanford Cars dataset. All meth-
ods are trained with DINOv2. Best results are in bold.

Methods ViT-B ViT-S

ProtoPNet (K=3) 84.11 79.25
ProtoPNet (K=5) 84.90 79.28

TesNet (K=3) 85.16 82.14
TesNet (K=5) 87.44 82.01
EvalProtoPNet 87.88 83.68
EvalProtoPNet 88.08 83.80

Ours (K=3) 87.05 83.11
Ours (K=5) 88.59 83.93

Table 2. Classification results on Stanford Dogs dataset. All meth-
ods are trained with DINOv2. Best results are in bold.

additional data augmentation besides resizing.

C. Additional Results

The results on Stanford Cars and Stanford Dogs datasets
over two backbones are shown in Table 1 and Table 2.
Foreground Extraction. We experimented with a few
methods that can be directly used with our framework. PaPr
[26] produces a foreground mask by thresholding the fea-
ture map from the last layer of a lightweight convolutional
backbone such as resnet18 and MobileNets. Attention Roll-
out [46] calculates the foreground mask with the attention
values between the patch tokens and the cls token of each
Transformer block of a ViT backbone. Finally, the fore-
ground masks can also be obtained by thresholding the first
principal component of a batch of patch tokens [27]. Table
3 shows the effect of each method on the performance of
our framework.

Con. Sta. Dis. Class.
No foreground extraction 29.67 82.85 94.17 88.42
PaPr w/ resnet18 51.01 82.33 97.23 88.76
Attention Rollout 61.90 79.97 92.77 90.75
First Principal Component 66.40 82.97 94.45 90.82

Table 3. The effect of various off-the-shelf ViT foreground patch
extraction methods on the performance of our framework.

Algorithm 2 Python-like pseudo-code of Distinctiveness
Score calculation.
def evaluate_distinctiveness(model, test_dataset, bbox_size):

all_O_x = []
for image in test_dataset:

activations = model.get_activation(images) # shape: K, H, W
sample_IoUs = []
for i in range(K):

for j in range(K):
activation_i_max_coord = max_coord(activations[i])
activation_j_max_coord = max_coord(activations[j])
bbox_i = get_bbox(activation_i_max_coord)
bbox_j = get_bbox(activation_j_max_coord)
IoU = compute_box_IoU(bbox_i, bbox_j)
sample_IoUs.append(IoU)

O_x = mean(sample_IoUs)
all_O_x.append(O_x)

return 1 - mean(all_O_x)

Algorithm 3 Python-like pseudo-code of Comprehensive-
ness Score calculation.

def normalize(activations):
activations = activations.unsqueeze(0)
max_values = F.adaptive_max_pool2d(activations, (1, 1))
min_values = -F.adaptive_max_pool2d(-activations, (1, 1))
return (activations - min_values) / (max_values - min_values)

def calculate_iou(mask1, mask2, eps=1e-6):
intersection = torch.sum(mask1 & mask2)
union = torch.sum(mask1 | mask2)
IoU = intersection / (union + eps)
return IoU

def evaluate_comprehensiveness(model, test_dataset, threshold):
all_IoUs = []
for (image, ground_truth_foreground_map) in test_dataset:

activations = model.get_activation(images) # shape: K, H, W
activations = normalize(activations)
activations_union = (activations >= threshold).sum(dim=0)
IoU = calculate_IoU(

activations_union,
ground_truth_foreground_map

)
all_IoUs.append(IoU)

return mean(all_IoUs)

D. Visualizations

We show the typical reasoning process of our framework
across CUB-200-2011 in Table 4. Each row displays how
a particular prototype contributes to the logit of its corre-
sponding class. Note that first column displays the proto-
type’s most similar image patch from the training set, while
the second column displays the source image of the proto-
type in the first column. In addition, we also provide more
comparison of activation maps across ProtoPNet architec-
tures in Figure 1.

Why is this image classified as a

American Pipit ?

Prototypical

Part

Source

Image

Activation

Map

Score

2.92

2.33

2.71

.

Why is this image classified as a

Ringed Kingfisher ?

Prototypical

Part

Source

Image

Activation

Map

Score

3.05

2.43

2.73

.

Why is this image classified as a

Western Grebe ?

Prototypical

Part

Source

Image

Activation

Map

Score

3.09

2.82

2.52

.

Why is this image classified as a

Clark Nutcracker ?

Prototypical

Part

Source

Image

Activation

Map

Score

2.93

2.99

2.82

.

Why is this image classified as a

Great Grey Shrike ?

Prototypical

Part

Source

Image

Activation

Map

Score

2.99

3.02

3.28

.

Why is this image classified as a

Yellow Warbler ?

Prototypical

Part

Source

Image

Activation

Map

Score

2.88

2.73

3.26

.

Table 4. Visualization of the typical visual reasoning process of our framework on CUB-200-2011 dataset.

Eval w/ densenet161 OursEvalProtoPoolProtoPNetInput

Gray Kingbird

Loggerhead
Shrike

Great Grey
Shrike

Brown
Thrasher

Pine
Grosbeak

Blue Jay

Figure 1. Visualization on CUB-200-2011 test images across various ProtoPNet architectures. All models are trained using the same
DINOv2 ViT-B backbone with K = 5 unless annotated.

