
A. Activation Reduction vs. Suppression
Event-driven platforms [13, 46, 65] facilitate efcient DNN
inference through two key properties: near-memory com-
puting and event-driven processing. Near-memory comput-
ing reduces data movement costs by positioning memory in
close proximity to logic units, while event-driven process-
ing exploits activation sparsity by processing elements only
when events (i.e., non-zero activations) occur. Both prop-
erties can signicantly minimize latency and energy con-
sumption during DNN inference.
Previous studies [18, 49, 50, 70] have shown signicant
progress in reducing computations through temporal sup-
pression. However, this approach necessitates storing the
intermediate features (i.e., neuron states) for each layer at
time t-1 to generate inter-frame sparse differences at time
t. As shown in Fig. 2, the state memory usage emerges as
the primary bottleneck in mobile DNN architectures. This
hinders the on-chip deployment of their temporal models,
negating potential energy savings despite their signicant
advantages in computation reduction, as illustrated in Fig. 1.
To prevent the induction and accumulation of errors in long-
term temporal ∆-Σ processing, MEET reduces the num-
ber of neuron states by trading fewer activations to more
weights, while maintaining the linearity of ∆-Σ modula-
tion (see Eq. (1)), referred to as activation reduction. To
minimize dynamic computations, MEET suppresses non-
zero values in the activation maps by leveraging temporal
redundancy in videos, thereby improving event-driven pro-
cessing, referred to as activation suppression.
More precisely, activation reduction is a modication of the
network architecture, which removes feature maps or layers
from the original network. It is similar to structural prun-
ing [9, 43], as both aim to reduce activations. However,
structural pruning can cause accuracy loss as it simultane-
ously reduces activation count, weight count, and computa-
tional load. In contrast, the A → W tradeoff in MEET re-
duces the activation count while increasing the weight count
and computational load, thus maintaining accuracy.
On the other hand, activation suppression is an optimiza-
tion method that preserves the original network architecture
while dynamically reducing the number of non-zero activa-
tions during inference, based on the input data. On event-
driven platforms, only non-zero activations trigger memory
accesses and computations, resulting in substantial savings
in latency and energy consumption [70, 72].
In summary, activation reduction minimizes the ac-
tivation count without directly saving computations,
whereas activation suppression saves computations
without reducing the activation count. Prior research [7,
18,36,48–50,70] have primarily focused on activation sup-
pression to leverage the sparsity-aware properties of event-
driven platforms, often overlooking the memory bottleneck

associated with neuron states.

B. Temporal Sparsity and Network Design
As shown in Fig. 11, ENLite2 exhibits low static compu-
tations, while MEET-Full incurs heavy static computations.
In an ideal scenario where there are no changes between
video frames, no dynamic computation is triggered in ei-
ther network, even if their static computations differ signif-
icantly. In a more realistic scenario, where some changes
occur between frames (e.g., no and minor camera motion),
dynamic computations increase in both networks, but the
gap between their dynamic computations remains negligi-
ble. Since many evaluated videos in the MPII [2] dataset
involve only moderate camera motion, the average dynamic
computations of the two networks remain largely similar
across the entire dataset. However, in a more challenging
scenario with signicant camera motion (e.g., major camera
motion), the dynamic compute gap increases from 0 to 9 M,
still relatively small compared to the total dynamic cycles.
MEET still achieves a 1.7× cycle improvement over EN-
Lite2 (ReLU Sparsity). In the worst-case scenario, where
random frames exhibit zero temporal correlation, the com-
pute gap increases, making temporal suppression unadvis-
able (see Appendix E). Thus, we believe that increasing
static computations can be a viable strategy if it enhances
other critical metrics (e.g., model accuracy, memory foot-
print), as the increased computations are likely offset by
temporal sparsity.

Figure 11. EfcientNetLite2 (light) and MEET-Full (heavy) are
evaluated across videos with different temporal correlations in
MPII dataset.

C. Mix Spatial-Temporal Execution
MEET incorporates a mixed network architecture design
that considers both the impact of suppression methods and
the memory constraints of real-world hardware. First, we
observe that the deeper layers of the network have fewer
states because of their smaller feature sizes, but exhibit a
stronger temporal suppression effect. Secondly, as noted
in [64, 69], ne-grained (e.g., layerwise) mixed spatial-
temporal execution in DNNs is memory-intensive. This is
because n+1 layer states are required for n consecutive tem-
poral layers, meaning that fewer consecutive temporal lay-
ers result in increased state memory costs.



Therefore, we divide the network into stages based on the
feature downscale factor λ, with each stage consisting of the
same block type coupled with specic suppression methods,
as shown in Fig. 12. As an example of MEET-Mix@16×,
if λ > 16, we retain the Inverted Bottleneck Blocks (MB)
and reduce dynamic computations through spatial suppres-
sion [72]. Otherwise, we apply CSM-NAS (search space:
FuseV2 block) to minimize the state size and reduce dy-
namic computations through temporal suppression [18]. In
the special case where λ equals 1, CSM-NAS is applied to
the entire network, referred to as MEET-Full.

Figure 12. Overview of MEET-Full and MEET-Mix@λ×.

D. Activation→Weight Tradeoff in CSM-NAS
Our CSM-NAS enables a more ne-grained and efcient A
→ W tradeoff compared to the original FuseV2 MB block,
with reduced manual efforts. In MEET, CSM-NAS incor-
porates multi-objective constraints within its search pro-
cess. As shown in Fig. 13, under a given state memory
budget, applying only a compute constraint produces candi-
dates (purple) with minimal cycles, but leading to reduced
accuracy. In contrast, applying only a memory constraint
results in candidates (green) with increased redundant cy-
cles. However, when both memory and compute constraints
are incorporated, the resulting candidates (yellow) maintain
high accuracy while minimizing computational load. Pre-
serving low static cycles is essential, as temporal sparsity
can substantially narrow the dynamic computation gap be-
tween light-weight and heavy-weight networks but cannot
fully equalize dynamic computations across all networks.

Figure 13. Effectiveness of the compute & memory constraint in
CSM-NAS for compute and state memory efciency at the same
accuracy levels.

Figure 14. Effect of camera motion on temporal, spatial and
mix suppression. Models trained and optimized with Simple-
Baselines [61] (backbone: EfcientNet-Lite2 (ENet-Lite2) [55])
are evaluated on motion-classied MPII datasets [18]. Grouped by
accuracy, we show the cycle reduction of each approach relative to
the ReLU-Sparsied ENet-Lite2 across various camera motions.

E. Motion Effects on Event Suppression
E.1. Experimental setup

Datasets and Applications: We conduct experiments on
human body pose estimation task using MPII [2] video
dataset. To show the motion effects on event suppres-
sion, followed by previous work [18], we split the MPII [2]
dataset into four motion classes: major motion, minor mo-
tion, no motion, and all data.
Network Architectures: We evaluate MEET by replac-
ing the network backbone with CSM-NAS networks in
SimpleBaselines [61]. We use EfcientNet-Lite2 (ENet-
Lite2) [55] as a reference backbone, as it optimizes net-
work efciency in static computations, resulting in superior
performance in dynamic computations compared to other
widely-used networks [30, 53].
Methods: We employ STAR [72] and EvNet [18] for spa-
tial and temporal suppression, respectively, as each rep-
resents the state-of-the-art (SOTA) in suppression perfor-
mance within its respective category.
Evaluation Protocol: We follow established evalua-
tion metrics from the main paper, including accuracy
(PCK@0.5), dynamic cycles (Dyn Cycles), state memory
usage (State Mem.), and total memory usage (Total Mem.)
encompassing weights and states. We use the performance
estimator, GrAIFlow [46], to measure the DNN inference
cycles on an event-driven platform GrAI-VIP [59]. Tempo-



ral thresholds are derived from a subset of the training data
and then evaluated across the entire validation set, with val-
ues xed for different motion studies to maintain consistent
model accuracy. (Additional implementation details can be
found in Appendix G).
Performance Comparisons: We observe signicant varia-
tion in event sparsity across network architectures: heavy-
weight networks (e.g., ResNet [30], VGG [53]) achieve
greater cycle reduction compared to lightweight networks
(e.g., MobileNets [32, 51], EfcientNets [55]), but with a
higher number of absolute cycles, as shown in Tab. 3 and
Tab. 5. To ensure a fair comparison, we normalize the
results by setting the dynamic cycles of ReLU-Sparsied
ENet-Lite2 as the baseline, presenting relative improve-
ments across various networks and suppression methods .

E.2. Spatial vs. Temporal Suppression

As shown in Fig. 14, each approach shows cycle reduc-
tion relative to ReLU-Sparsied ENet-Lite2 under vari-
ous camera motions, transitioning from temporal to spa-
tial suppression (left to right). We rst look into all data
evaluation (brown) to compare different suppression meth-
ods. One salient trend is that temporal suppression (ENet-
Lite2 + EvNet, MEET-Full) and mix suppression (MEET-
Mix@16×) achieve 2.6× and 2.5× computation savings,
signicantly outperforming the 1.7× savings in spatial sup-
pression (ENet-Lite2 + STAR). The second noticeable trend
is that both MEET-Full and MEET-Mix@16× achieve a
similar cycle reduction as ENet-Lite2 + EvNet, indicating
that MEET can effectively maintain the computation ef-
ciency while reducing neuron states.

E.3. Motion Effects

Fig. 14 compares cycle reductions across different camera
motions for each approach. Spatial suppression (ENet-Lite2
+ STAR) shows a consistent reduction across all camera
motions, indicating a negligible impact from camera mo-
tion. In contrast, the cycle reduction for temporal suppres-
sion (ENet-Lite2 + EvNet, MEET-Full) varies signicantly.
For example, MEET-Full increases the cycle reduction from
1.7× to 13.6× as the camera motion decreases from major
motion to no motion. More precisely, MEET-Full achieves
cycle reduction similar to spatial suppression under major
motion, but achieves 5.1× and 13.6× reductions under mi-
nor and no motion, respectively, signicantly surpassing
the 1.7× reduction in spatial suppression and demonstrat-
ing potential for ultra-efcient DNN inference.
In addition, MEET-Mix@16× demonstrates a superior cy-
cle reduction of 2.2× in major motion, but achieves mod-
erate reductions of 3.6× and 4.6× under minor and no mo-
tion, respectively. This is due to the use of spatial suppres-
sion in the initial network stages (λ >16), which is sim-
ilar under major motion but worse under minor or no mo-

tion compared to temporal suppression, as shown in Fig. 15.
However, Fig. 16 shows that computations are more inten-
sive in the deeper stages than in the initial stages; therefore,
MEET-Mix@16× can signicantly benet from decreased
camera motion in the deeper stages, resulting in overall bet-
ter cycle reduction compared to spatial suppression. No-
tably, MEET-Mix@16×, a mixed spatial-temporal suppres-
sion approach, consistently outperforms spatial suppression
in cycle reduction and exhibits better robustness to motion
effects compared to temporal suppression.
Lastly, MEET-Full consistently achieves cycle reductions
similar to ENet-Lite2 + EvNet across various camera mo-
tions and network stages, as illustrated in Fig. 17, highlight-
ing its capability to maintain the computation efciency of
ENet-Lite2 + EvNet under all conditions.

E.4. Hardware Deployment

In our study, we carry out the experiments on an event-
driven platform GrAI-VIP [46, 59], which is equipped with
36 MB on-chip memory (SRAM). We assess the impact of
different camera motions (see Fig. 14) while considering
hardware memory constraints (see Tab. 4) to identify the
optimal candidate in various scenarios.
Major camera motion: MEET-Mix@16× demonstrates
a superior cycle reduction compared to all the others. It
proves to be the optimal choice for such scenarios, achiev-
ing a 2.2× cycle reduction with a total memory cost of 12.8
MB, well within the limit of on-chip memory.
Minor or no camera motion: Temporal suppression sig-
nicantly outperforms spatial suppression in cycle reduc-
tion. However, the SOTA temporal approach (ENet-Lite2
+ EvNet) requires 66.2 MB of state memory usage, far
exceeding the on-chip memory constraint. MEET-Full
and MEET-Mix@16× address this issue by reducing state
memory usage to 26.6 MB and 6.8 MB, respectively, en-
abling temporal networks to deploy within SRAM. No-
tably, MEET-Full achieves superior cycle reductions of
5.1× and 13.6× under minor and non-camera motion, re-
spectively, preserving the computation efciency of ENet-
Lite2 + EvNet while surpassing the 3.6× and 4.6× re-
ductions of MEET-Mix@16×. These advantages establish
MEET-Full as the optimal candidate for such scenarios.
All camera motion types (all data): MEET-Mix@16×
achieves a cycle reduction comparable to temporal suppres-
sion while signicantly outperforming spatial suppression.
With the benet of lower memory usage, MEET-Mix@16×
emerges as the optimal choice, delivering a 2.5× cycle re-
duction with a total memory cost of 12.8 MB. However,
Fig. 16 shows that MEET-Mix@16× fails to match the cy-
cles of ENet-Lite2 + EvNet in the initial network stages un-
der both minor and no camera motion. We infer that major
motion videos constitute a signicant portion of the entire



(a) major camera motion (b) minor camera motion (c) no camera motion

Figure 15. Dynamic cycle comparison between ENet-Lite2 + EvNet and ENet-Lite2 + STAR across network stages.

(a) major camera motion (b) minor camera motion (c) no camera motion

Figure 16. Dynamic cycle comparison between ENet-Lite2 + EvNet and MEET-Mix@16× across network stages.

(a) major camera motion (b) minor camera motion (c) no camera motion

Figure 17. Dynamic cycle comparison between ENet-Lite2 + EvNet and MEET-Full across network stages.

validation dataset, which substantially diminishes the con-
tribution of minor and no motion videos in cycle reduction
when averaged across the entire dataset. Thus, identifying
a reliable metric to assess the dynamic performance of tem-
poral networks under different camera motions presents an
intriguing direction for future research.
In summary, MEET-Full and MEET@16× perform as the
optimal candidates across various camera motion scenarios,
outperforming both SOTA temporal and spatial suppression
when considering real-world hardware constraints. As a re-
sult, the deployment of our memory-efcient temporal ∆-
Σ DNNs (MEET) harnesses the advantages of both near-
memory computing and event-driven processing, which are
essential for achieving low-power edge processing.

F. Energy Bottleneck in High Sparsity

(a) ENet-Lite2 + EvNet (b) MEET-Full

Figure 18. Breakdown of memory access in (ENet-Lite2
+ EvNet) versus MEET-Full for an event-driven platform.
MEET signicantly reduces neuron state accesses, alleviating the
energy bottleneck in high-sparsity event-driven processing.

As shown in Fig. 18, an interesting observation arises when
we break down the number of memory access for (ENet-



Lite2 + EvNet) and MEET-Full. The number of neuron
state access for the former approach is considerably higher
than that of the latter one due to its much larger state size.
Since the state access count remains constant regardless of
sparsity, the high state access count of ENet-Lite2 becomes
increasingly signicant as network sparsity increases, ulti-
mately becoming an energy bottleneck in highly sparse tem-
poral models. However, MEET-Full substantially mitigates
this issue by minimizing the state size.

G. Implementation Details
Standard Training: All standard models [30, 32, 51, 55]
and CSM-NAS searched models are trained from scratch
following an identical training recipe according to applica-
tions. All spatial and temporal (activation) suppression ex-
periments are conducted on these standard-trained models.
Spatial Suppression: We employ STAR [72] for spatial
suppression, a method that penalizes and thresholds low-
magnitude activations during optimization training. The
optimization training process is half the standard training
epochs, with the learning rate reduced by a factor of 10 at
every 1/3 epochs.
Temporal Suppression: We utilize EvNet [18] for tem-
poral suppression, a method that truncates low-magnitude
delta activations while mitigating truncation errors through
long-term memory. A subset of the training data is used to
netune the optimal power-of-two values for layer-specic
thresholds without training, achieving a balance between
accuracy and dynamic cycle efciency.
Mix Suppression: In MEET-Mix@λ× models, spatial
suppression is applied exclusively to the activations of In-
verted Bottleneck Blocks (MB), since MB trades fewer
weights for more activations. In contrast, weight compres-
sion is applied solely to the weights of CSM-NAS Blocks
(FuseV2), as FuseV2 trades fewer activations for more
weights. In addition, temporal suppression, an optimization
in an orthogonal direction to spatial optimization (e.g., spa-
tial suppression, weight pruning, weight quantization, etc),
is applied to CSM-NAS Blocks, causing negligible impact
on weight compression. Importantly, block-specic opti-
mization prevent excessive reduction in either weights or
activations, thereby maintaining model accuracy.
Weight Compression: Following previous studies [9, 29,
57], we combine pruning [68] and quantization [38] to
collaboratively compress the memory footprint of network
weights. In particular, weight sparsity via pruning also aids
dynamic computation reduction on event-driven processors,
as each MAC is the inner product of an activation and a
weight. However, we exclude it from the calculation of dy-
namic cycles to keep the focus of the study clear. Addi-
tionally, we apply quantization exclusively to weights, not
activations, to mitigate accuracy drop. Low-bit weights not

only reduce memory usage but also decrease the energy
required for weight fetching, which is reected in the ac-
tive energy measures. While advanced weight compression
methods like those in [9,57] could yield additional savings,
they are beyond the scope of this paper.

H. Broader Impact
MEET reduce the activation count, leading to reductions in
both state memory and overall memory usage for temporal
∆-Σ DNNs, makcing them deployable within the on-chip
memory of embedded event-driven platforms. In our study,
we adopt EvNet [18] as our temporal ring mechanism due
to its superior event suppression performance. However,
MEET can benet any temporal suppression method [26,
48–50,64,70] in memory reduction, regardless of their event
ring mechanism, quantization or thresholding, etc.
Furthermore, Temporal∆-ΣNetworks share many similari-
ties with Spiking Neural Networks (SNNs) [19], as both are
inspired by the human brain and leverage sparsity in tem-
poral domain for efcient computing. In SNNs, the number
of neurons in a layer is often chosen to match the number
of units in the feature map of the corresponding DNN layer
to enable one-to-one mapping when converting a DNN to
an SNN. Therefore, MEET can also benet SNNs by re-
ducing the neurons, thereby lowering the cost of off-chip
data movement or alleviating the required neuron amount
on event-driven platforms.


