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A. Proofs

A.1. Proof of Proposition 1

Restated Proposition (Proposition 1). The weight of the

spurious feature after projection is

�
0 = � +

r>s ryo

r>s rs
. (24)

Proof. We have d 2 Rd core features c which determine the
prediction target y and the spurious features s. Suppose we
observe n features, stacked as C = [c1, · · · , cn] 2 RN⇥d

and s = [s1, · · · , sn] 2 RN . We have two regression sce-
narios:
• Full model: Linear regression on the core features z and

the spurious feature s:

y = C� + �s+ ", (25)

where � and � are the weights associated with the core
features c and the spurious feature s, respectively. " is a
noise term with an expected value of 0.

• Projected model: Applying the projection matrix ⇧ to
C to obtain C̃ = C⇧, followed by linear regression on c̃
and s:

y = C̃�̃ + �
0s+ "0 (26)

where �̃ and �
0 are the weights for the projected core fea-

tures c̃ and the spurious feature s.
We define M = I � C̃(C̃>

C̃)�1
C̃

>, ry = My and rs =
Ms. Applying M to both sides of Eq. (26), we obtain:

ry = MC̃�̃ + �
0rs +M"0 (27)

= �
0rs +M"0 [MC̃ = 0] (28)

The weight of spurious feature is derived as:

�
0 = (r>s rs)

�1r>s ry. (29)

The core features C can be decomposed into the remaining
part C̃ and the projected-out part Co:

C = C⇧+ C(1�⇧) = C̃ + Co (30)

Combine Eq. (30) and Eq. (25), we have:

y = C̃� + Co� + �s+ " (31)

Denote yo = Co� is contribution of the projected-out core
features and ryo = Myo, we can express ry as:

ry = My (32)

= M(C̃� + Co� + �s+ ") (33)

= ryo + �rs +M" [MC̃ = 0] (34)

Plugging into Eq. (29) and omitting the noise term (since
E[" · s] = 0), we have:

�
0 = (r>s rs)

�1r>s (rs� + ryo) (35)

= � + (r>s rs)
�1r>s ryo (36)

A.2. Proof of Proposition 2

Lemma 1. Let ŷ = argmax
y02Y f(x)y0 denote the pre-

diction of f . The balanced group error (BGE) defined

in Eq. (15) can be expressed as:

BGE(f) =
1

|G|Ex[
X

g2G

P(g|x)
P(g) · P(y 6= ŷ|x)]. (37)

Proof.

BGE(f) =
1

|G|
X

g2G
Ex|g[y 6= argmax

y02Y
f(x)y0 ] (38)

=
1

|G|
X

g2G

Z

x
1[y 6= ŷ]P(x|g)dx (39)

=
1

|G|
X

g2G

Z

x
1[y 6= ŷ]

P(g|x)
P(g) P(x)dx (40)

=
1

|G|
X

g2G
Ex[

P(g|x)
P(g) · 1[y 6= ŷ]] (41)

=
1

|G|Ex[
X

g2G

P(g|x)
P(g) · 1[y 6= ŷ]] (42)

The expected value Ex[1[y 6= ŷ]] can be expressed as the
joint expectation over x and y. By applying the law of to-
tal expectation, we rewrite Eq. (43) by conditioning on x
in Eq. (44).

Ex[1[y 6= ŷ]] = Ex,y[1[y 6= ŷ]] (43)
= ExEy|x[1[y = ŷ|x]] (44)

Given x, ŷ is deterministic. Thus the inner expectation sim-
plifies to the probability of y = ŷ conditioned on x:

Ey|x[1[y = ŷ|x] = P(y = ŷ|x) (45)

Substituting back into Eq. (44), we have:

Ex[1[y 6= ŷ]] = Ex[P(y = ŷ|x))] (46)

Combining Eq. (46) with Eq. (42), we arrive at Eq. (37).

Restated Proposition (Proposition 2). Let G(y) denote

the set of groups with class label y, i.e., G(y) := {g =



(y0, a) 2 G|y0 = y}. Let � denote the group priors, i.e.,

�g = P(g). The prediction :

argmax
y2Y

f
⇤(x)y = argmax

y2Y

X

g2G(y)

(h(x)� ln�)g (47)

is Bayes optimal for the problem in Eq. (15).

Proof. Using Lemma 1, to minimize the balanced group er-
ror, it is equivalent to minimize the term inside the expecta-
tion:

X

g2G

P(g|x)
P(g) · P(y 6= ŷ|x) (48)

=
X

y2Y
[
X

g2G(y)

P(g|x)
P(g) · (1� P(y = ŷ|x))] (49)

It is equivalent to maximize:

X

y2Y
[
X

g2G(y)

P(g|x)
P(g) ] · P(y = ŷ|x). (50)

Denote ay =
P

g2G(y)
P(g|x)
P(g) and by = P(y = ŷ|x). Since

{ay} are fixed and by is a probability simplex, i.e., by > 0
and

P
y
by = 1. We are equivalent to solving the following

constrained optimization problem:

max
by

X

y

ayby, s.t. by > 0,
X

y

by = 1 (51)

It is straightforward to show that the optimal value is
maxi ai, achieved when i = argmax

i
ai, with bi = 1 and

bj = 0 for j 6= i. Substituting back the definitions of a and
b. The solution is:

P(y = ŷ|x) =
(
1, if y = argmaxy0

P
g2G(y0)

P(g|x)
P(g)

0, otherwise
(52)

It is equivalent to show that:

P(argmax
y0

X

g2G(y0)

P(g|x)
P(g) = ŷ|x) = 1 (53)

Therefore, the Bayes optimal solution is:

argmax
y2Y

f
⇤(x)y = argmax

y0

X

g2G(y0)

P(g|x)
P(g) (54)

With the definition �g = P(g) and P(g|x) / exp(h(x)g),
we have:

P(g|x)
P(g) / exp(h(x)g)

exp(ln�g)
/ (h(x)� ln�)g (55)

Since proportional scaling does not change argmax results,
combining Eq. (55) with Eq. (54), we obtain Eq. (47).

B. Additional Experimental Details

B.1. Additional Implementation Details

For all methods evaluated in our experiments, we use the
SGD optimizer with a weight decay of 5⇥ 10�5 and a mo-
mentum of 0.9. The initial learning rate is set to 0.0002
and decreases to 0 using cosine annealing. The models
are trained for 100 epochs, with a warm-up learning rate
of 10�5 applied during the first epoch to mitigate explosive
gradients in the early training iterations. The batch size is
set to 128 for most datasets, except for CelebA, where it is
increased to 512 to accelerate training due to the dataset’s
relatively larger size. All classification heads including lin-
ear probing, prompt tuning and adapters are initialized with
the zero-shot prompting. For all datasets except BAR, we
evaluate the model on the validation set at the end of each
epoch and select the one with the highest worst-group ac-
curacy for final testing. For the BAR dataset, which lacks a
validation set, we use the checkpoint from the last epoch for
testing. The hyperparameter ⌧ is searched within the range
[0.8, 0.9, 1.0, 1.1, 1.2]. All experiments are conducted in a
single NVIDIA A6000 GPU.

B.2. Prompt Templates

In Tab. 7, we present the prompt templates for zero-shot
prompting and group-informed prompting for each dataset.
Zero-shot prompting with class names is also used to con-
struct the class proxy matrix Z in step 1 of our PPA. Tab. 8
lists the class names and group names for all datasets.

B.3. Versatility of Fine-Tuning Paradigms

In Tab. 9, we apply our PPA to other parameter-efficient
fine-tuning paradigms using CLIP ViT-L/14 models. We
observe consistent gains in worst group accuracies.

We further extend our method to train 2-Layer MLP after
CLIP, with results in Tab. 10, showing that the 2-Layer MLP
offers no significant gains over the linear layer.

B.4. Noise Sensitivity of Pseudo-Labels

To assess the noise sensitivity, we randomly select p% of the
training samples and assign random values to subgroup la-
bels within each class to introduce pseudo-label errors. The
worst-group accuracies for varying p are shown in the figure
below. Our results indicate that the proposed method main-
tains high WGA when label noise is below 10%, demon-
strating its robustness under mild noise conditions.

B.5. Comparison with Other Methods

We compare our model with [16] using CLIP ResNet-50
in Tab. 11.



Table 7. Class prompt and group prompt templates.

Dataset Class Prompt Group Prompt

Waterbirds a type of bird, a photo of a {class}. a type of bird, a photo of a {class} on {group}.

CelebA a photo of a celebrity with {class}. a photo of a celebrity, a {group} with {class}.
MetaShift a photo of a {class}. a photo of a {group} {class}.

BAR a photo of a person doing {class}. N/A
Living-17 a photo of a {class}. N/A

Table 8. Class and group names.

Dataset Class Names Group Names

Waterbirds landbird, waterbird land, water
CelebA non-blond hair, blond hair man, woman
MetaShift dog, cat outdoor, indoor
BAR climbing, diving, fishing, pole vaulting, racing, throwing N/A

Living-17 salamander, turtle, lizard, snake, spider, grouse, parrot, crab,
dog, wolf, fox, cat, bear, beetle, butterfly, ape, monkey N/A

Table 9. PPA consistently improves group robustness for across
different efficient fine-tuning paradigms using CLIP ViT-L/14.

Method Waterbirds CelebA MetaShift

WGA Avg WGA Avg WGA Avg

Linear Probe + ERM 65.9 97.6 28.3 94.7 84.6 96.7
Linear Probe + PPA 87.2 94.6 90.4 91.0 94.8 96.8

CoOp + ERM 74.0 97.3 26.7 94.6 91.9 96.9
CoOp + PPA 87.4 94.1 85.6 88.3 93.7 96.4

Adapter + ERM 79.3 97.8 54.4 94.5 90.6 95.5
Adapter + PPA 83.3 95.8 88.3 91.7 92.3 96.4

Table 10. Results of other fine-Tuning paradigms.

Waterbirds CelebA MetaShift

WGA Avg WGA Avg WGA Avg

Linear Layer 84.3 88.3 91.1 92.1 90.8 94.7
2-Layer MLP 83.4 88.1 90.4 92.5 90.1 95.9
Full Fine-Tuning 83.7 89.8 91.8 93.2 89.5 95.2

Figure 3. Results on noise sensitivity.

Table 11. Comparison with other methods.

Method Waterbirds CelebA

WGA Avg WGA Avg

CLIP + B2T [2] 61.7 76.9 80.0 87.2
CLIP + PPA (ours) 84.3 88.3 91.1 92.1

B.6. Results without Tuning ⌧

The results with ⌧ = 1 are reported in Tab. 12. As expected,
⌧ = 1 still achieves SOTA.

Table 12. Results without Tuning ⌧ .

Waterbirds CelebA MetaShift

WGA Avg WGA Avg WGA Avg

Optimal ⌧ 84.3 88.3 91.1 92.1 90.8 94.7
⌧ = 1 82.7 91.3 91.1 92.1 89.8 94.1

B.7. Additional Dataset Details

In this section, we show the statistics of all datasets used in
our experiments in Tabs. 13 to 17 and illustrate some image
samples in Figs. 4 to 7.

C. Discussion of Limitation

Our approach assumes that the CLIP text encoder can offer
class proxies for downstream tasks. However, if the pre-
trained knowledge diverges significantly from the down-
stream tasks, the effectiveness of our method may be lim-



Table 13. Statistics of Waterbirds.

Train Test
Water Land Water Land

Waterbird 1057 56 642 642
Landbird 184 3498 2255 2255

Table 14. Statistics of CelebA.

Train Test
Female Male Female Male

Blond 22880 1387 2480 180
Non-blond 71629 66874 9767 9767

Table 15. Statistics of MetaShift.

Train Test
Indoor Outdoor Indoor Outdoor

Cat 630 153 345 65
Dog 402 635 191 273

Table 16. Statistics of Living-17.

Train Test
Majority Minority Majority Minority

Group size 2340 117 100 100

Table 17. Statistics of BAR.

Train Test
Majority Minority Minority

Climbing 326 5 100
Diving 520 8 151
Fishing 163 4 38
Racing 336 9 123
Throwing 137 3 82
Vaulting 279 7 124

ited. For instance, if the images are X-ray scans and the
target is to predict a specific illness, the text encoder of the
pre-trained model may lack relevant medical knowledge.
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Figure 4. Image samples of Waterbirds.
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Figure 6. Image samples of MetaShift.

Majority 

Groups

Minority 

Groups

Climbing Diving Fishing Vaulting Racing Throwing

Rock Wall Underwater Water Surface Sky Paved Track Playing Field

Ice Wall Sky Ice Indoor Sand Water Surface

Figure 7. Image samples of BAR dataset.
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