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Supplementary
In the supplementary material, we provide more techni-

cal details, experimental results, and downstream applica-
tions of our proposed method:
• Sec. A: implementation details.
• Sec. B: quantitative & qualitative comparisons and abla-

tion studies.
• Sec. C: downstream applications, including object Gaus-

sian extraction, object removal, and object mesh recon-
struction.

• Sec. D: limitation and future work.

A. Implementation details
We implement our method based on the 3D Gaussian Splat-
ting (3D-GS) representation [4]. Our method comprises
three main modules: the basic 3D Gaussian splatting back-
bone, the Gaussian-level features, and a global object-
level codebook. For the basic 3D Gaussian splatting back-
bone, we follow the official 3D Gaussian Splatting imple-
mentation in [4]. For Gaussian-level features, we set the
dimension of the Gaussian-level feature to 16 for a fair
comparison with previous baselines (e.g., Gaussian Group-
ing [10] and OmniSeg3D-GS [11]). By using the splatting
technique, the rendered feature map results in a shape of
16×H×W , where 16 is the feature dimension and (H,W )
represents the resolution of (Height, Width). For the object-
level codebook, we set the default value of L as 256, rep-
resenting the maximum number of objects in the scene, and
d = 16 applies the same feature dimension as in Gaussian-
level features.

During training, we jointly train the basic 3D Gaussian
Splatting backbone, the Gaussian-level features, and the
object-level codebook. Specifically, we utilize the same
image rendering loss with the same learning rate and den-
sity control as outlined in [4] to optimize the original 3D-
GS backbone. We employ the contrastive loss term (Eq. 1
in the main paper) to optimize the Gaussian-level feature
and use the Adam optimizer with a learning rate of 0.0025.
Moreover, we use the association constraints (Eq. 8 in the

main paper) to optimize the object-level codebook and em-
ploy the Adam optimizer with a learning rate of 0.0005. In
practice, we block the gradient derived from the association
constraints from propagating to the Gaussian-level features.
This gradient-blocking design ensures that the Gaussian-
level features are exclusively optimized through the con-
trastive loss. We jointly train all parameters by directly
adding all the loss terms—image rendering loss, contrastive
loss, and association constraints—with equal weight (i.e., 1)
for 30,000 iterations on each dataset covered in this work,
using a single NVIDIA RTX 3090.

B. Experimental results
B.1. More results
3D visual results. We provide 3D Gaussian center point-
level visual comparisons on the LERF-masked dataset. Fol-
lowing the protocol in Gaussian Grouping, we obtain the
selected instance IDs and highlight them in 3D. The results
in Fig. 1 further show that our new framework is able to
produce more accurate 3D segmentation.

Visualization for ablation study. The visual results in
Fig. 2 demonstrate that both the explicit codebook formu-
lation and the tailored codebook training strategies progres-
sively enhance the effectiveness of our end-to-end lifting
framework.

Complete comparisons on Messy Room dataset. We
provide the results of Gaussian Grouping [10] in Tab. 1 for
complete comparisons on the Messry Room dataset [2]. The
results demonstrate that our method achieves clearly im-
proved performance than the existing segmentation method
based on 3D Gaussian representation.

Time efficiency. We provide a detailed comparison of the
time efficiency in Tab. 1. Overall, our method significantly
enhances performance and requires a similar amount of to-
tal time (approximately 1 hour) as existing efficient base-
lines. Thanks to our lightweight object-level codebook



Figure 1. 3D results on LERF-masked dataset.

Figure 2. Visual results for ablation study on Replica.

Type Method Mean PQscene(%) Pre-processing Training Post-processing Total time
Pre-processing Gaussian Grouping [10] 48.9 7 min 44 min 0 51 min
End-to-end Panoptic-Lifting-GS [6] 58.6 0 56 min (≈ 1h) 0 56 min
Post-processing OmniSeg3D-GS [11] 66.0 0 57 min (≈ 1h) 24 min 81 min
Post-processing OmniSeg3D-GS (best hyper-parameter for all scenes) [11] 65.4 0 57 min (≈ 1h) 24 min 81 min
End-to-end Ours 69.0 0 62 min (≈ 1h) 0 62 min

Table 1. Detailed time efficiency analysis on the Messy Rooms dataset [2]. Note that, we test the time (including pre-processing, training,
and post-processing) for all methods using a single NVIDIA RTX 3090 GPU. Following [2], PQscene metric is reported for comparisons.

design, the joint learning of Gaussian-level features and
the object-level codebook does not increase the time bud-
get much. The pre-processing method, Gaussian Group-
ing [10], achieves the best training speed but suffers from
inferior performance. For the post-processing method, the
results in Tab. 1 show that hyper-parameter tuning in clus-
tering is time-consuming, requiring an additional 24 min-
utes per scene on the Messy Room dataset[2], which further
limits its applicability.

Detailed comparisons with post-processing methods.
For the post-processing lifting method, i.e., OminiSeg3D-
GS [11], we report the performance under the optimal best-
found hyper-parameter (i.e., minimal cluster size) for HDB-
SCAN clustering algorithm [5], following the same strat-
egy used in Contrastive Lift [2]. Specifically, we utilize
the training views to search for the best hyper-parameter
for each scene, setting the search range from 10 to 200,
as suggested in “Tuning Clustering Hyperparameter” [2].
In contrast, our new end-to-end lifting pipeline enjoys

the following two strengths: effectiveness and efficiency.
1). Effectiveness. We plot the results of OminiSeg3D-
GS [11] under different parameter values (minimal cluster
size) in Fig. 5, showing that the post-processing is sensi-
tive to the hyper-parameter. Moreover, while the exhaus-
tive search can improve performance, it is still behind our
method, which achieves consistent results without the need
for hyperparameter tuning. As shown in Fig. 3, we no-
tice that it is challenging to achieve a good balance be-
tween avoiding artifacts and identifying small objects by
tuning hyper-parameters in the clustering algorithm. This
challenge inherently limits the upper potential of the post-
processing lifting method. 2). Efficiency. Tab. 1 indicates
that the hyper-parameter tuning in post-processing is time-
consuming, leading to an additional 30% of the total train-
ing time compared to our pipeline.

Qualitative comparisons. We provide more qualitative
comparisons in Fig. 6, Fig. 7 and Fig. 8. These visual
results further demonstrate that our method delivers more



Figure 3. Qualitative comparison of post-processing method (i.e., OminiSeg3D-GS [11]) and our method on replica dataset [10]. We
plot the results of OmniSeg3D-GS [11] under different hyper-parameters (i.e., minimal cluster size), which demonstrate the difficulty in
achieving a good balance between avoiding artifacts and identifying small objects by tuning the hyperparameters.

accurate and consistent segmentation across various views,
while also minimizing artifacts.

Method LERF-masked Replica Training

mIoU mBIoU mIoU F-score time

Contrastive Lift 75.0 72.4 38.2 34.0 ≥ 20 h
Ours 80.9 77.1 41.6 43.9 ≈ 1 h

Table 2. More quantitative comparisons with Contrastive Lift.

Figure 4. Visual comparison with Contrastive Lift on Replica.

More comparisons with Contrastive Lift [2]. We
provide more comparisons with the NeRF-based post-
processing baseline Contrastive Lift [2]. We perform ex-
periments for Contrastive Lift on the LERF-masked and our
customized Replica datasets as no public results are avail-
able for Contrastive Lift. The results in Tab. 2 and addi-
tional visualizations in Fig. 4 show that our method clearly
outperforms Contrastive Lift in terms of segmentation re-
sults and training time, again confirming its effectiveness.

B.2. Ablation Study
We further conduct the following ablation studies on the
Replica dataset [10] for a better analysis of our method.

ID matching strategy mIoU(%) F-score(%)

Mapping in Panoptic Lifting [6] 30.3 30.4
Proposed area-aware ID mapping 31.7 33.5

Table 3. Effectiveness analysis of the proposed area-aware ID
mapping method. We compare the segmentation results of pseudo-
labels generated by our area-aware ID mapping and the approach
proposed in Panoptic Lifting [6].

Area-aware ID mapping. To further verify the effective-
ness of our area-aware ID mapping, we present additional

τ 0.75 0.80 (default) 0.85

mIoU(%) 40.0 41.6 40.4
F-score(%) 43.0 43.9 43.7

Table 4. Quantitative comparisons of using different thresholds τ
values in the noisy label filtering module.

Method mIoU(%) F-score (%)

Full model 41.6 43.9
W/o gradient-blocking design 39.7 39.8

Table 5. Ablation study on the effectiveness of our gradient-
blocking design.

Model PSNR↑ SSIM↑ LPIPS↓
3D Gaussian Splatting [4] 28.69 0.870 0.182
Gaussian Grouping [10] 28.43 0.863 0.189
Ours 28.53 0.869 0.180

Table 6. Quantitative comparisons of rendering quality on Mip-
NeRF360 dataset [1]. Our method utilizes the same 3D-GS back-
bone as in Gaussian Grouping [10], which achieves almost the
same performance for novel-view synthesis. We provide the re-
sults for completeness.

quantitative comparisons between the pseudo-labels gener-
ated by our area-aware ID mapping method and the method
proposed in Panoptic Lifting [6]. The results shown in
Tab. 3 verify that the pseudo-labels generated by our area-
aware ID mapping are more accurate and consistent.

Sensitivity to different per-defined values in noisy la-
bel filtering. We investigate the impact of the predefined
threshold used in the noisy label filtering module. In our
main experiments, we set a predefined threshold of τ = 0.8
to filter noisy segmentations in the noisy label filtering mod-
ule. To investigate the impact of this threshold, we conduct
additional experiments using two different values (τ = 0.75
and 0.85). As shown in Tab. 4, the results remain rather sta-
ble despite moderate changes in the threshold τ .

Gradient-blocking. The results in Tab. 5 demonstrate
that our gradient-blocking strategy design improves opti-



mization stability.

Rendering quality. We utilize the same 3D-GS backbone
as Gaussian Grouping [10], and provide the rendering qual-
ity comparisons on the Mip-NeRF 360 dataset [1] in Tab. 6.
As expected, our method achieves almost the same perfor-
mance for novel-view RGB image synthesis as Gaussian
Grouping and 3D-GS.

C. Application results

We conduct three downstream applications to demonstrate
the effectiveness of our method.

Object Gaussian extraction. Based on the explicit 3D
GS representation, we can perform the 3D object Gaussian
extraction utilizing the 3D segmentation results. Specifi-
cally, we directly identify the corresponding Gaussians for
the selected object IDs. Then, we utilize the extracted ob-
ject Gaussian to perform novel-view synthesis for visual
comparison with Gaussian Grouping [10] in Fig. 9 (a). The
results illustrate that our method achieves accurate object-
level Gaussian asset extraction with fewer noisy Gaussians.

Object removal. We further test the application of object
removal. In practice, we directly remove the corresponding
Gaussians belonging to the selected object ID and render
the image with the remaining Gaussians. As shown in Fig. 9
(b), our method can generate clearer results compared with
Gaussian grouping, due to the fact that more accurate 3D
segmentation results are exploited.

Object mesh reconstruction. We showcase that our
method can further facilitate object mesh reconstruction.
Concretely, we incorporate the multi-view consistent seg-
mentation maps generated by our method and Gaussian
Grouping [10] into the 2D-GS pipeline [3], and extract the
3D mesh belonging to the selected object. We provide a
visual comparison in Fig. 10. The results show that our seg-
mentation results can lead to better object meshes with more
accurate boundaries and fewer artifacts, further demonstrat-
ing the effectiveness of our method.

D. Limitation and future work

Our method focuses on static 3D scene segmentation for 3D
understanding and cannot handle scenes with dynamic ob-
jects. To further enable 4D scene understanding, one possi-
ble direction is to incorporate segmentation information into
the 4D-GS methods [8, 9]. We leave this for future work.
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Figure 5. The detailed comparison between our method and OmniSeg3D-GS methods on the LERF-Mask dataset [10], Replica dataset [7]
and the Messy Rooms dataset [2] dataset. For LERF and Replica datasets, we utilize the mIoU metric to search the best hyper-parameter
for each scene. For the Messy Rooms dataset, we utilize the PQ-Scne to select the best hyper-parameter for each scene. Note that our
method is denoted by the red color, and OmniSeg3D-GS is denoted by the blue color.



Figure 6. Visual comparisons between our method and previous methods on the LERF-Masked dataset [10].



Figure 7. Visual comparisons between our method and previous methods on the Replica dataset [7].



Figure 8. Visual comparisons between our method and previous methods on the Messy Rooms dataset [7].



Figure 9. Qualitative comparison of application results on LERF-Masked dataset [10]. As shown in (a), we provide a visual comparison
of object Gaussian assert extraction result with Gaussian grouping [10]. Thanks to the accurate 3D segmentation results, we could extract
more accurate Gaussians for the select object ensuring less noisy rendering results. As shown in (b), we provide comparisons for object
removal. We remove the Gaussians belonging to the “yellow toy” object and utilize the left Gaussian to perform the novel view synthesis.
Notably, to better illustrate the 3D segmentation quality, we do not use post-processing [10] for our method and baseline. The results show
that our method could generate more clean images than the results generate by Gaussian Grouping [10]. We use the officially released
checkpoint of Gaussian Grouping [10] to conduct the experiments.



Figure 10. Visualizations of the object mesh reconstruction application results on the LERF-Masked dataset [10]. We demonstrate that our
consistent segmentation can be incorporated into the surface reconstruction method (i.e., 2D-GS [3]) to facilitate object-level mesh results.
The results show that using our segmentation can lead to object meshes with more accurate boundaries and fewer artifacts. We use the
officially released checkpoint of Gaussian Grouping [10] to conduct the experiments.
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