
Supplementary Material for Revisiting Source-Free Domain Adaation:
Insights into Representativeness, Generalization, and Variety

The supplementary material contains in-depth information regarding the theoretical analysis, implementation specifics,
and supplementary experimental results.

1. Theoretical Details

A hypothesis is a function represented as h : X → {0, 1}. The probability according to the distribution D that a hypothesis
h disagrees with the ground truth function f (which can also be a hypothesis) is defined as

ℓ(h, f,D) = Ex∈D

[
|h(x)− f(x)|

]
. (1)

When we intend to denote the source error of a hypothesis associated with source domain Ds, we use the shorthand
ℓs(h) = ℓ(h,Ds) = ℓ(h, fs, Ds). Similarly, for the target domain Dt ≜ {xi

t}
nt
i=1, we employ the notations ℓ(h, ft, Dt),

ℓ(h,Dt), and ℓt(h). Suppose that we can select some unlabeled target data xi
t ∈ Dt that the model h can produce highly

accurate pseudo-labels ỹit to them. Thus, the target domain can be divided into two subsets: the selected subset denoted as

Dt,l ≜ {(xi
t,l, ỹ

i
t,l)}

nl
t

i=1 and the remaining subset indicated as Dt,u ≜ {xi
t,u}

nu
t

i=1.

Definition 1.1 (Based on [1] ). Given a domain X with D and D′ probability distribution over X , let H be a hypothesis
class on X and denote by I(h) the set for which h ∈ H is the characteristic function; that is, x ∈ I(h),. The H-divergence
between D and D′ is

dH(D,D′) = 2 sup
h∈H

∣∣PrD(I(h))− PrD′ [I(h)]
∣∣ (2)

Lemma 1.2 (Based on [1] ). Let H be a hypothesis space on X with VC dimension d, If U and U ′ are samples of size m
from D and D′ respectively and d̂H(U ,U ′) is the empirical H-divergence between samples, then for any δ ∈ (0, 1), with
probability at least 1− δ,

dH(D,D′) ≤ d̂H(U ,U ′) + 4

√
d log (2m) + log ( 2δ )

m
(3)

Lemma 1.3. For any hypothesis h, h′ ∈ H,∣∣ℓ(h, h′, Ds)− ℓ(h, h′, Dt)
∣∣ ≤ sup

h,h′∈H

∣∣ℓ(h, h′, Ds)− ℓ(h, h′, Dt)
∣∣

= sup
h,h′∈H

∣∣Prx∈Ds [h(x) ̸= h′(x)]− Prx∈Dt [h(x) ̸= h′(x)]
∣∣

=
1

2
dH∆H(Ds, Dt)

Theorem 1.4. Given an unlabeled target domain Dt, we can assign the ground truth label yit to some unlabeled target data
xi
t. Thus, the target domain can be divided into two subsets: the selected subset denoted as Dt,l and the remaining subset

indicated as Dt,u. We assume that Ut,l and Ut,u are i.i.d. induced from the Dt,l and Dt,u with size of m, respectively. Let
ℓ(·, ·) be a loss function on a hypothesis and a dataset (for empirical error) or a distribution (for generalization error). If h
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is governed by the parameter θ trained on Dt and belongs to a hypothesis space H of VC-dimension d, then with probability
at least 1− p over the choice of samples, the inequality holds,

ℓt(h,Dt) ≤ 2ℓ(h,Dt,l) +
1

2
d̂H∆H(Dt,l, Dt,u) + 2

√
d log (2m) + log ( 2p )

m
+ λ (4)

where dHδH(Dl, Du) denotes the distribution divergence, and λ = min{ℓt,l(h, ft), ℓt,u(h, ft)}.

Proof. Recall that ℓt(h) = ℓ(h,Dt) = ℓ(h, ft, Dt), and Dt = {Dt,l, Dt,u}. Similarly, we have ℓt,l(h) = ℓ(h,Dt,l) =
ℓ(h, ft,l, Dt,l) and ℓt,u(h) = ℓ(h,Dt,u) = ℓ(h, ft,u, Dt,u).

ℓ(h,Dt) = Ext∈Dt

[∣∣h(xt)− ft(xt)
∣∣] = Ext∈{Dt,l+Dt,u}

[∣∣h(xt)− ft(xt)
∣∣]

≤ Ext,l∈Dt,l

[∣∣h(xt,l)− ft,l(xt,l)
∣∣]+ Ext,u∈Dt,u

[∣∣h(xt,u)− ft,u(xt,u)
∣∣] = ℓ(h,Dt,l) + ℓ(h,Dt,u)

= ℓ(h,Dt,l) + ℓ(h,Dt,u) + ℓ(h,Dt,l)− ℓ(h,Dt,l) + ℓ(h, ft,u, Dt,l)− ℓ(h, ft,u, Dt,l)

= 2ℓ(h,Dt,l) +
(
ℓ(h,Dt,u)− ℓ(h, ft,u, Dt,l)

)
+
(
ℓ(h, ft,u, Dt,l)− ℓ(h,Dt,l)

)
≤ 2ℓ(h,Dt,l) +

∣∣ℓ(h, ft,u, Dt,u)− ℓ(h, ft,u, Dt,l)
∣∣+ ∣∣ℓ(h, ft,u, Dt,l)− ℓ(h, ft,l, Dt,l)

∣∣
≤ 2ℓt,l(h) + sup

h,ft,u∈H

∣∣ℓ(h, ft,u, Dt,u)− ℓ(h, ft,u, Dt,l)
∣∣+ ∣∣ℓ(h, ft,u, Dt,l)− ℓ(h, ft,l, Dt,l)

∣∣
= 2ℓt,l(h) +

1

2
dH∆H(Dt,l, Dt,u) +

∣∣ℓ(h, ft,u, Dt,l)− ℓ(h, ft,l, Dt,l)
∣∣

≤ 2ℓt,l(h) +
1

2
dH∆H(Dt,l, Dt,u) + ℓ(h, ft,u, Dt,l) + ℓ(h, ft,l, Dt,l)

≤ 2ℓt,l(h) +
1

2
d̂H∆H(Ut,l,Ut,u) + 2

√
d log (2m) + log ( 2δ )

m
+ λ

The last step is an application of Lemma 1.2 and 1.3. λ comes from the classification error on Dt,l with classifiers ft,u
and ft,l.

2. Details of The Datasets and Implementation
Office-Home is a challenging dataset, which includes 15,500 images from 65 categories in office and home circumstances,
consisting of four particularly dissimilar domains: Artistic images (A), Clip Art (C), Product images (P), and Real-World
images (R). We establish a total of 12 transfer tasks by incorporating all available domains. we configure the top-k sample
parameter in Equation 7 to be 5, set the σ in Equation 5 at 50%, setup M nearest neighbors for target data refinement in
Equation 9 to 5, and adjust the β in Equation 11 to 0.9. The training process contains 5 rounds, with each round consisting
of 5 epochs.

DomainNet is a substantial domain adaptation dataset, notable for its extensive scale encompassing 6 domains and 345
classes. However, due to the presence of noisy labels in some domains and classes, we follow a specific protocol mentioned
in [10]. In line with this protocol, 4 domains (Real, Clipart, Painting, Sketch) and 125 classes are selected. We focus on the
adaptation scenarios where the target domain is not real images, and construct 7 scenarios from the 4 domains. we configure
the top-k sample parameter in Equation 7 to be 15, set the σ in Equation 5 at 50%, setup M nearest neighbors for target data
refinement in Equation 9 to 5, and adjust the β in Equation 11 to 0.9. The training process contains 10 rounds, with each
round consisting of 5 epochs.

VisDA-C is a challenging large-scale synthesis-to-real object recognition dataset that contains 12 classes. The source
domain includes 152k synthetic images and the target domain contains 55k real images. we configure the top-k sample
parameter in Equation 7 to be 300, set the σ in Equation 5 at 50%, setup M nearest neighbors for target data refinement in
Equation 9 to 5, and adjust the β in Equation 11 to 0.9. The training process contains 10 rounds, with each round consisting
of 5 epochs.

3. Sensitivity to top-k in Equation 7
To verify the impact of the top-k in Equation 7, we conduct experiments on Office-Home with the adaptation task A→C.
The value of the top-k varies from 1 to 25. As shown in Figure 1 (a), We have observed that both a small and a large value
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Figure 1. (a) Visualizing the influence of top-k in Equation 7 on the selected pseudo labeled target data with domain task A→C on Office-
Home. (b) Visualizing the training behavior of our method on adaptation task Re→Cl on DomainNet.
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Figure 2. As shown from left to right, four figures provide insights into the effect of hyperparameters on our method when applied to the
domain task A→C on Office-Home dataset. (a) illustrates the impact of the length of rounds which range from 1 epoch to 30 epochs per
round. (b) delves into the impact of the proportion of the selected target subset Dt,l within the overall target dataset Dt. (c) describes the
effect of the ratio σ of reliable data selected from the entire target data in Equation 5. (d) plots the influence of the M nearest neighbors
selected for target data refinement in Equation 9.

for the top-k lead to decreased performance in our study. In the case of a small top-k value, the performance suffers due
to the limited selection of pseudo-labeled data.This limitation negatively impacts the alignment between the pseudo-labeled
and unlabeled target data, ultimately affecting the overall performance. Conversely, when employing a larger top-k value,
our method tends to select more data, including those with noisy label information. This abundance of noisy data adversely
influences the performance, resulting in a decrease in overall effectiveness.

4. Accuracy vs. Round Number Curve for DomainNet

We delve deeper into understanding the training behavior of our approach on DomainNet. As depicted in Figure 1 (b),
the accuracy trend of our method shows a gradual improvement. Notably, after four rounds, our approach demonstrates a
significant performance boost, surpassing the state-of-the-art GPUE method [10].

5. Hyper-parameter Analysis

We evaluate the sensitivity of hyper-parameters in our method. Namely, the length of the round, the proportion of the selected
target subset Dt,l within the overall target dataset Dt, the ratio σ of the selected reliable data, and the number of M nearest
neighbors used for pseudo-label refining.

As illustrated in Figure 2 (a) and Figure 3 (a), our performance exhibits continuous improvement with increasing round
length. A longer round allows for more comprehensive model training, resulting in enhanced model performance.

In Figure 2 (b) and Figure 3 (b), we observe the performance of our method across various proportions of selected target
data with pseudo-label assignment. The performance consistently improves within the range of [0.1, 0.5]. However, beyond
a ratio of 0.5, there is a slight performance degradation. This decline is attributed to the inclusion of more target data as
selected data, which results in lower-quality pseudo-labels and consequently, a deterioration in model performance.
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Figure 3. As shown from left to right, four figures provide insights into the effect of hyperparameters on our method when applied to the
domain task Re→Cl on DomainNet dataset. (a) illustrates the impact of the length of rounds which range from 1 epoch to 30 epochs per
round. (b) delves into the impact of the proportion of the selected target subset Dt,l within the overall target dataset Dt. (c) describes the
effect of the ratio σ of reliable data selected from the entire target data in Equation 5. (d) plots the influence of the M nearest neighbors
selected for target data refinement in Equation 9.

Table 1. Sample Selection and Alignment strategies study.

Method A→C A→P A→R

“SHOT++[Selection]” + “Our[Alignment]” 58.7 79.2 81.9
“Our[Selection]” + “AaD[Alignment]” 60.1 79.7 82.3

“Our[Selection]” + “Our[Alignment]” (Ours) 61.2 80.9 82.7

SHOT++ [9] 57.9 79.7 82.5
AaD [15] 59.3 79.3 82.1

As shown in Figure 2 (c) and Figure 3 (c), we observe that a small ratio σ of selected reliable data results in lower
performance. This is because a lower ratio σ of selected reliable data leads to a biased estimation of target class centers
through the assigned pseudo-labels.

In Figure 2(d) and Figure 3(d), we observe that both a small and a large number of nearest neighbors negatively impact
performance. A smaller number of nearest neighbors introduces bias due to the limited contribution of label information
from the surrounding data points. On the other hand, a larger number of nearest neighbors includes semantically dissimilar
data points, which degrades the quality of the refined labels and ultimately reduces performance.

6. Sample Selection and Alignment Strategies Study

We integrated sample selection and alignment strategies from two state-of-the-art methods, namely SHOT++ [9] and
AaD [15]. We denote our methods as “Our[Selection]” + “Our[Alignment]”. Specifically, we utilize the sample se-
lection strategy from SHOT++, referred to as “SHOT++[Selection],” and the alignment strategy from AaD, denoted as
“AaD[Alignment]”. We evaluate the performance of “SHOT++[Selection]” + “Our[Alignment]” and “Our[Selection]” +
“AaD[Alignment]” on adaptation tasks, namely A→C, A→P, and A→R, using the Office-Home dataset.

In Table 1 We observed that adopting the sample selection strategy from SHOT++, which uses entropy as the metric to
select target data with entropy values larger than the average entropy values over the entire dataset as selected data, results in
“SHOT++[Selection]” + “Our[Alignment]” significantly underperforming our results. This phenomenon can be attributed to
two reasons. Firstly, “SHOT++[Selection]” heavily relies on the entropy value, which may struggle to distinguish between
confident and extremely sharp predictions. Secondly, “SHOT++[Selection]” selects target data only once, and the large num-
ber of selected data leads to a low quality of pseudo labels. Therefore, it demonstrates the advantage of our sample selection
strategy compared to the sample selection strategy from SHOT++. Combining “Our[Selection]” with “AaD[Alignment],”
we observe that it also underperforms compared to our approach. This is mainly due to “AaD[Alignment]” blindly trusting
the predicted semantic information of the neighbors, which can lead to negative clustering when these predictions are not
very accurate. Additionally, the reliance on inaccurate local clusters can result in suboptimal discriminative representation
learning. Therefore, it proves the advantage of our adaptation strategy over the adaptation strategy from AaD.



Table 2. classification Accuracy (%) on VisDA-C (ResNet-101). The best results under SFDA setting are highlighted in bold. Note that
“SF” means whether the method belongs to SFDA method.

Method SF plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.

ERM [6] × 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4

CDAN [11] × 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
MCC [4] × 88.1 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8

SHOT [8] ✓ 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
A2Net [13] ✓ 94.0 87.8 85.6 66.8 93.7 95.1 85.8 81.2 91.6 88.2 86.5 56.0 84.3
AaD [15] ✓ 97.4 90.5 80.8 76.2 97.3 96.1 89.8 82.9 95.5 93.0 92.0 64.7 88.0
CoWA [7] ✓ 96.2 89.7 83.9 73.8 96.4 97.4 89.3 86.8 94.6 92.1 88.7 53.8 86.9
SDE [3] ✓ 95.3 91.2 77.5 72.1 95.7 97.8 85.5 86.1 95.5 93.0 86.3 61.6 86.5
AdaCon [2] ✓ 97.0 84.7 84.0 77.3 96.7 93.8 91.9 84.8 94.3 93.1 94.1 49.7 86.8
DaC [16] ✓ 96.6 86.8 86.4 78.4 96.4 96.2 93.6 83.8 96.8 95.1 89.6 50.0 87.3
C-SFDA [5] ✓ 97.6 88.8 86.1 72.2 97.2 94.4 92.1 84.7 93.0 90.7 93.1 63.5 87.8
I-SFDA [12] ✓ 97.5 91.4 87.9 79.4 97.2 97.2 92.2 83.0 96.4 94.2 91.1 53.0 88.4
SHOT+DPC [14] ✓ 95.6 88.2 82.8 59.4 92.5 95.7 85.6 81.7 91.6 90.9 87.6 60.1 84.3

Ours ✓ 94.6 86.4 85.4 96.8 96.7 92.2 96.1 82.6 88.2 88.4 89.8 72.4 89.1

7. Results on VisDA-C
Table 2 compares our method against state-of-the-art UDA and SFDA approaches on the VisDA-C dataset, addressing the
synthetic-to-real domain shift. The table is organized into three sections: ERM, UDA, and SFDA methods, with ERM
serving as the baseline lower bound. Our approach consistently demonstrates significant improvements over the majority of
the compared methods. Notably, our method outperforms the best SFDA baseline, I-SFDA, while achieving substantial gains
over other state-of-the-art SFDA methods. Specifically, it delivers a 1.1% improvement over AaD, a 2.3% advantage over
AC, and a 1.3% enhancement over C-SFDA in terms of average accuracy (Avg.).
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