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Supplementary Material

This supplementary material provides additional in-

formation to complement the main paper. It contains the

following sections:

• More experimental results in Sec. A.

• More implementation details in Sec. B.

• Network architecture details in Sec. C.

• More qualitative results in Sec. D.

A. More Experimental Results

In this section, we present additional experimental results.

A.1. Ablation Study on Kernel Sizes

We conducted an ablation study on the kernel size within

the Adaptive Frequency Selective Fusion (AFSF) module.

The detailed results are shown in Tab. 1. Considering both

accuracy and temporal consistency, we ultimately selected

the combination of 1× 1 and 3× 3 convolutional kernels as

our experimental configuration.

Kernel

Sizes

TartanAir[8] Dynamic Replica[4]

RMSE(m) REL OPW RMSE(m) REL OPW

1×1 + 5×5 0.173 0.025 0.163 0.082 0.020 0.175

3×3 + 5×5 0.164 0.024 0.172 0.084 0.021 0.201

1×1 + 3×3 0.164 0.024 0.159 0.086 0.020 0.171

Table 1. Comparison of different kernel sizes on TartanAir and

Dynamic Replica datasets.

A.2. Computational Cost of Methods

We evaluated the parameter count and computational cost

of different completion methods, as detailed in Tab. 2. It

can be observed that our proposed baseline model for multi-

frame fusion, DVDC, achieves the smallest parameter count

and FLOPs. Building on this baseline, the SVDC model,

which incorporates CSEA and AFSF, increases the param-

eter count by only 0.1M and the FLOPs by 3.4 GFLOPs,

demonstrating the lightweight characteristics of our pro-

posed design.

A.3. More Quantitative Comparisons

In the accuracy comparison between our method and the

SOTA methods, only RMSE and REL are used. Additional

results on the TartanAir and Dynamic Replica datasets are

shown in Tab. 3 and Tab. 4.

CFormer BPNet DVDC SVDC

FLOPs (G) 184.1 247.9 48.2 51.6

Params (M) 82.5 89.9 22.7 22.8

Table 2. Comparison of computational cost and the parameters.

Methods

TartanAir

RMSE↓
(m)

REL↓ δ1 ↑ δ2 ↑ δ3 ↑

BPNet 0.337 0.051 0.965 0.976 0.983

CFormer 0.352 0.052 0.963 0.975 0.982

DVDC 0.183 0.030 0.994 0.998 0.999

SVDC 0.164 0.024 0.995 0.999 0.999

Table 3. Quantitative results on the TartanAir dataset.

Methods

Dynamic Replica

RMSE↓
(m)

REL↓ δ1 ↑ δ2 ↑ δ3 ↑

BPNet 0.126 0.031 0.987 0.993 0.995

CFormer 0.127 0.030 0.986 0.993 0.995

DVDC 0.095 0.026 0.993 0.997 0.998

SVDC 0.086 0.020 0.994 0.998 0.998

Table 4. Quantitative results on the Dynamic Replica dataset.

B. More Implementation Details

B.1. Sparse dToF Data

When simulating actual dToF data from ground truth depth,

several steps are taken to make the simulated sparse dToF

depth closely resemble those collected by real-world de-

vices. The field of view (FOV) is set to 70°, and a uniform

sampling of 30 × 40 pixels is applied. Barrel distortion is

introduced, along with global rotation and translation trans-

formations. Points with low reflectance are dropped based

on their RGB values. Random noise and dropout are also

added to the data. The visualized results of the simulated

sparse dToF depth are shown in Fig. 1.

These perturbations significantly degrade the quality of

the sparse dToF depth. The RMSE and REL of the valid

depth points returned by the dToF simulation are summa-

rized in Tab. 5. On the TartanAir dataset, the REL is 0.060,

and the RMSE is 0.494, while on the Dynamic Replica

dataset, the REL is 0.058, and the RMSE is 0.292.
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Figure 1. Sparse dToF depth on RGB image

Input data TartanAir Dynamic Replica

Sparse

dToF depth

RMSE(m) REL RMSE(m) REL

0.494 0.060 0.292 0.058

Table 5. Sparse dToF depth metrics

B.2. Definition of Evaluation Metrics

We provide the definitions of the metrics used during our

testing. The temporal consistency metric OPW[9] has al-

ready been mentioned in the main text of the paper. Here,

we supplement it with detailed explanations of the accuracy

metrics RMSE, REL, and Accuracy with threshold t, as well

as the temporal consistency metric TEPE[6].

• Accuracy Metrics

Root Mean Square Error (RMSE):

RMSE =

√

√

√

√

1

N

N
∑

i=1

(d̂i − di)2

where d̂i represents the predicted depth, di represents the

ground truth depth, and N is the number of valid pixels.

Mean Absolute Relative Error (REL):

REL =
1

N

N
∑

i=1

|d̂i − di|

di

where d̂i represents the predicted depth, di represents the

ground truth depth, and N is the number of valid pixels.

Accuracy with threshold t: Percentage of di such that

max

(

d̂i

di
,
di

d̂i

)

= δ < t, t ∈ {1.25, 1.252, 1.253},

where d̂i and di are the predicted depth and ground truth

depth of pixel i.

• Temporal Consistency Metric

Temporal End-Point Error (TEPE):

TEPE = ∥
(

W(di)− di+1

)

−
(

W(d̂i)− d̂i+1

)

∥1

where W(·) represents the optical flow warping operation

from frame i to frame i + 1. We use the optical flow pre-

dicted by the GMFlow[10] to perform this warping.

C. Network Architecture Details

C.1. Multiframe Fusion

The multi-frame fusion network architecture is shown in

Fig. 2. Multi-frame features are aligned using a flow-

guided network and then sent to a bidirectional propagation

module, where feature fusion is performed using a Res-

block[3]. Taking the alignment of features between the t-

th and (t − 1)-th frames as an example, the optical flow-

guided alignment network first inputs RGBt and RGBt−1

into the pre-trained optical flow model SpyNet[5] to obtain

the coarse optical flow Ot→t−1. Then, Ot→t−1 and features

ft, ft−1 are concatenated, sent into a deformable convolu-

tional network[2] to derive the refined optical flow Ot→t−1.

Due to the diversity of the deformable convolution network,

we can obtain 8 different offsets to flexibly extract features

near the corresponding pixels. Finally, we warp the feature

ft with the fine optical flow Ot→t−1, obtaining the feature

f̃t, aligned with ft−1.

Ot→t−1 = SpyNet(RGBt, RGBt−1) (1)

Ot→t−1 = DCN (concat(ft, ft−1), Ot→t−1) (2)

f̃t = W(ft, Ot→t−1) (3)

C.2. DepthHead

We employ the method proposed in AdaBins[1], replacing

its miniViT module with a lightweight convolutional mod-

ule as our depth head, which maps the feature represen-

tations to the depth. Unlike directly regressing depth, we

predict the depth as a linear combination of different depth

bins. Specifically, for each image, we predict its bin-width

vector b, which is used to derive the depth bin centers c(b).
For each pixel, we predict its probabilities p of belonging to

different bins. Assuming the depth range is divided into N

different bins, the final predicted depth d̂ for each pixel can

be expressed as follows:

d̂ =

N
∑

k=1

c(bk)pk (4)

D. More Qualitative Results

In this section, we provide additional visual comparisons

on the TartanAir and Dynamic Replica datasets. We plotted
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Figure 2. Multi-frame fusion network details
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Figure 3. Qualitative results of scanline slice over time

a scanline slice over time to illustrate the temporal consis-

tency of different methods. Moreover, we also present com-

parisons of the predictions made by various methods[7, 11]

in object edges(high-frequency) and smooth regions(low-

frequency), highlighting their differences.

In Fig. 3, we present a scanline slice over time, where the

first row corresponds to RGB images and the second row

represents the scanline patterns over time. Fewer zigzag

patterns indicate better temporal consistency. Compared

to other methods, our approach demonstrates fewer zigzag

patterns, showcasing superior temporal consistency.

In Fig. 4, we display qualitative results on the Tar-

tanAir dataset. It can be observed that our SVDC method

achieves smoother estimations in low-frequency regions,

demonstrating the effectiveness of our frequency-selective

fusion strategy in suppressing high-frequency noise in low-

frequency areas.

In Fig. 5, we present qualitative results on the Dynamic

Replica dataset. The results show that our SVDC method

achieves more accurate estimations in high-frequency re-

gions, highlighting its capability to preserve high-frequency

details effectively.
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Figure 4. More qualitative results on the TartanAir dataset
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Figure 5. More qualitative results on the Dynamic Replica dataset
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