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1. Evaluation Metrics
1.1. Calculation Formulas
Given a generated set G = {xg|xg ∈ Rn×3} and a real
dataset R = {xr|xr ∈ Rn×3}, both consist of point clouds
with n points. In practice,R is the test set unseen during the
training of SeaLion, while G is the set of samples generated
during the inference. D(·) is the Chamfer distance or earth
mover’s distance to measure the distance between two point
clouds. The calculation formulas for metrics such as cov-
erage (COV), minimum matching distance (MMD) [1], 1-
nearest neighbor accuracy (1-NNA) [8], and snapping score
(SNAP) [5] are listed as follows:
Coverage (COV) measures the ratio of overlap between R
and G relative to the size of R. It first constructs a subset
by selecting the nearest neighbor inR for each xg , and then
computes the ratio of the cardinality of this subset to the
cardinality ofR,

COV(G,R) = |{argminxr∈R D(xg, xr)|xg ∈ G}|
|R|

. (1)

Minimum matching distance (MMD) computes the aver-
age distance between each xr inR and its nearest neighbor
in G,

MMD(G,R) = 1

|R|
∑
xr∈R

min
xg∈G

D(xg, xr). (2)

1-nearest neighbor accuracy (1-NNA) measures the sim-
ilarity between R and G by calculating the proportion of

samples in R or G whose nearest neighbors belong to the
same set.

1-NNA(G,R) =

∑
xg∈G 1(Nxg ∈ G) +

∑
xr∈R 1(Nxr ∈ R)

|G|+ |R| ,

(3)
where 1[·] is the indicator function, Nxg

is the nearest
neighbor of xg in the setR∪G\{xg}, with the same apply-
ing to Nxr

. If G is very similar to R, it becomes difficult
to determine whether the nearest neighbor of xg belongs
to G or R, and vice versa. In such cases, the 1-NNA score
approaches 50%.

Inter-part score (snapping metric, SNAP) [5] measures
the connection tightness between two contacting parts in
a object by computing the Chamfer distance between their
closet NSNAP points, e.g. NSNAP = 30. For the point cloud
x, the score SNAP(x) is calculated by

1

|P |
∑
p1∈P

min
xp2

∈Xp1

Chamfer{N (NSNAP)
xp2

(xp1), N
(NSNAP)
xp1

(xp2)},

(4)
where Xp1 denotes the connected parts to xp1 , e.g. if xp1

is the car body, Xp1 represents the contacting parts to the
car body, {roof, hood, wheel}. N (NSNAP)

xp2
(xp1

) refers to the
NSNAP nearest points in part xp1

to part xp2
.

1.2. More Discussions about Part-aware Metrics
In Section 3.4 of the main paper, we introduced novel met-
rics for evaluating the generation of segmentation-labeled
point clouds, including 1-NNA (p-CD). The formula for
1-NNA is presented at (3), while the part-aware Chamfer
distance p-CD (x1, x2) between point clouds x1 and x2 is
computed as follows:

∑
p∈P

{
1

|x1
p|

∑
q1∈x1

p

min
q2∈x2

p

||q1 − q2||22+
1

|x2
p|

∑
q2∈x2

p

min
q1∈x1

p

||q1 − q2||22
}
,

(5)
where xp

1 and xp
2 denote part p of the point clouds x1 and x2,

respectively, and q1, q2 ∈ R3 represent individual points.
For point clouds composed of different parts, we define the
pairwise distance as infinity. Here, we present a more com-
prehensive discussion on the development and rationale be-
hind 1-NNA (p-CD), as detailed below:
• Argument 1: The core of evaluation for generation tasks

is to measure the similarity between the generated set G
and the real dataset R. If the two sets cannot be easily
distinguished, the performance of the generative model is
considered good. The assessment of this distinction in-
corporates both micro and macro factors: the instance-
wise similarity between individual generated and real



Figure 1. The generated set G, which either (a) exhibits poor
mode coverage compared to the real dataset R or (b) contains
poor-quality samples, cannot achieve a good 1-NNA score. The
arrows indicate the nearest neighbors of samples. In both cases,
most samples and their nearest neighbors belong to the same set,
indicating a significant dissimilarity between G and R.

samples, and the overall distributional similarity between
G and R, i.e. similar mode coverage. In cases where G
consists of high-quality samples but exhibits poor mode
coverage (as shown in Figure 1 (a)), or where it has
similar mode coverage but includes low-quality samples
(as shown in Figure 1 (b)), the generative model cannot
achieve a good 1-NNA score (close to 50%), since the
samples in eitherR or G tend to have their nearest neigh-
bors within the same set.

• Argument 2: For the unlabeled generative tasks [11],
the calculation of 1-NNA is based on Chamfer Distance
(CD), which quantifies the shape distance between two
point clouds. Thus, the overall quality of xg is repre-
sented by CD(xg, xr): a low value of CD(xg, xr) indi-
cates a ideal quality of xg , and vice versa. However, we
need to consider two key factors in our task:

i. the overall quality of the generated point clouds,
ii. the accuracy (or rationality) of segmentation.

Due to the lack of “ground truth” segmentation for the
generated point clouds, explicitly evaluating segmenta-
tion accuracy, such as using mIoU, becomes infeasible.

• Argument 3: The limitations of metrics such as
1-NNA-p [5], which obtain final results by averaging
part-wise evaluations, in measuring inter-part plausibil-
ity are already discussed in Sec. 3.4 of the main paper.
In contrast, our novel metric, 1-NNA (p-CD), can explic-
itly evaluate shape quality and implicitly assess the ra-
tionality of segmentation. The reasoning is as follows:
given xg and xr with a very small part-aware Chamfer
Distance, i.e. p-CD(xg, xr)→ 0, two facts are implied:

i. All parts of xg are of good quality.
ii. All parts of xg align well with the correspond-

ing parts of xr. Since the parts of xr are assembled in a
reasonable way, the corresponding parts of xg also form
a coherent and reasonable whole. In other words, xg is
segmented well.

Metric Model Aneurysm

1-NNA (p-CD) ↓ (%)

Lion & PointNet++ 74.57
Lion & SPoTr 73.91

DiffFacto 71.74
SeaLion 65.22

COV (p-CD) ↑ (%)

Lion & PointNet++ 42.65
Lion & SPoTr 30.43

DiffFacto 39.13
SeaLion 60.87

MMD (p-CD) ↓
(×10−2)

Lion & PointNet++ 8.23
Lion & SPoTr 19.68

DiffFacto 8.05
SeaLion 7.37

Table 1. Evaluation on IntrA [9].

Metric Model Airplane

1-NNA (CD) ↓ (%) Lion 65.66
SeaLion 66.27

COV (CD) ↑ (%) Lion 46.04
SeaLion 46.63

MMD (CD) ↓
(×10−3)

Lion 3.90
SeaLion 4.07

Table 2. Impact of SeaLion’s segmentation branch on unlabeled
generation tasks.

Therefore, 1-NNA (p-CD) effectively measures the sim-
ilarity of G and R from the perspective of overall shape
quality and segmentation accuracy.

2. Pseudo-code of Part-aware 3D Editing

As discussed in Section 3.3 of the main paper, SeaLion can
serve as a tool for part-aware 3D shape editing. The related
pseudo code is provided in Algorithm 1.

3. Additional Experimental Details and Results

3.1. Two-step Method on IntrA Dataset

Since Lion [11] only released the pretrained weights for
airplane, car, and chair classes from ShapeNet [10], we
retrain Lion on the IntrA [9] dataset to evaluate the two-
step method on this dataset. Additionally, we train Point-
Net++ [7] and the state-of-the-art segmentation model,
SPoTr [6], to assign pseudo labels on the generated point
clouds, respectively. The experimental results presented in
Table 1 demonstrate that SeaLion outperforms DiffFacto
and the two-step method across all metrics, aligning with
the trends observed in the main paper.



Algorithm 1 Part-aware 3D shape editing using SeaLion.

1: Input: Point cloud x consisting of n points, segmentation labels y, desired fix-shape part p.
2: Output: Novel generated point cloud x0 with preserved fix-shape part p and variation in the remaining parts, along with

the updated segmentation labels y0.
3: maskp ← (y == p) ▷ Define a boolean mask to select points belonging to part p
4: z0 ← ϕz(x)
5: h0 ← ϕh(x, y, z0)
6: yτ ← y ▷ τ < T
7: Perturb h0 for τ steps to hτ

8: for t← τ to 1 do
9: ht−1, yt−1 ← ϵh(ht, t, z0)

10: yt−1 ← α · yt−1 + (1− α) · yt ▷ EMA smooth
11: maskt−1

p ← ((1−maskp)⊙ yt−1) == p

12: nt−1
p ←

∑
maskt−1

p

13: if nt−1
p > 0 then ▷ Substitute the latent points in the remaining part but predicted as fix-shape part p

14: maskt−1
others ← ((1−maskp)⊙ yt−1)! = p

15: Extract non-zero indices in maskt−1
others, randomly sample nt−1

p elements and then create a boolean mask for sub-
stitution maskt−1

resample

16: ht−1[maskt−1
p ]← ht−1[maskt−1

resample]

17: yt−1[maskt−1
p ]← yt−1[maskt−1

resample]
18: end if
19: Perturb h0 for t steps to h∗

t

20: ht−1 ← maskp ⊙ h∗
t−1 + (1−maskp)⊙ ht−1

21: yt−1 ← maskp ⊙ y + (1−maskp)⊙ yt−1

22: end for
23: x0 ← ξh(h0, y0, z0)
24: Return x0, y0

3.2. Impact of the Segmentation Branch

Although DDPMs are increasingly used as representation
learners for various downstream tasks [3], such as im-
age classification and segmentation, we are particularly
interested in the impact of the segmentation branch on
the original point cloud generation. If the representations
for segmentation prediction and 3D noise prediction lie in
entirely different distributions, combining both prediction
tasks within a unified model could be detrimental. To in-
vestigate this, we ignore the predicted segmentation labels
of the point clouds generated by SeaLion and re-evaluate
them using metrics designed for unlabeled generative tasks,
such as 1-NNA (CD). It is worth noting that the official
weights of Lion [11] are trained on a larger dataset [2]
compared to the segmentation-labeled subset [10]. To en-
sure a fair comparison, we retrain Lion on the smaller
segmentation-labeled subset [10]. The experimental results
presented in Table 2 illustrate that SeaLion achieves perfor-
mance comparable to Lion in the evaluation of unlabeled
generation task. This indicates that the representations for
noise and segmentation predictions align well in the feature
space. Therefore, incorporating the segmentation prediction
branch and its associated training objective do not degrade

the generative performance.

3.3. Data Augmentation based on DiffFacto and
SeaLion

Table 5 of the main paper presents the results of gener-
ative data augmentation using SeaLion for the segmenta-
tion task, where point clouds from six categories gener-
ated by SeaLion are incorporated to expand the training set
of SPoTr [6]. We test on car class using SPoTr with the
train set augmented by samples generated by DiffFacto [5]
and SeaLion for comparison. The results are 78.23% and
81.43% on mIoU.

3.4. Visualization of Generated Point Clouds from
SeaLion

Some of the generated point clouds of airplane, car, chair,
guitar, lamp, and table categories from SeaLion are demon-
strated in Figure 2, 3, 4, 5, 6, and 7, respectively. These
generated point clouds demonstrate high-quality on over-
all shapes and exhibit diverse modalities. A video vividly
showcasing the point clouds is submitted along with this
paper. Furthermore, Figure 8 presents a visual comparison
of cars generated by SeaLion, Lion & SPoTr [6, 11], and



DiffFacto [5].

3.5. Examples of Implausible Inter-part Coher-
ence within the Generated Point Clouds from
DiffFacto

An extreme case of implausible inter-part coherence within
a shape is demonstrated in Figure 4 of the main paper. More
realistic examples generated from DiffFacto [5] are shown
in Figure 9.

3.6. More Experimental Details and Hyper-
parameters

Hyper-parameters of the architecture of SeaLion. De-
tails about the hyper-parameters of global encoder ϕz ,
global diffusion module ϵz , point-level encoder ϕh, point-
level decoder ξh, and point-level diffusion module ϵh are
listed in Table 3, 4, 5, 6, and 7, respectively. PVConv, SA,
GA, and FP refer to point-voxel convolutions modules [4],
set abstraction layers [7], global attention layers, and fea-
ture propagation layers [7], respectively.
More training details. The training of SeaLion includes
two stages. We train the VAE model for 8k epochs in the
first stage and the latent diffusion model for 24k epochs in
the second stage. For these two stages, we use an Adam
optimizer with a learning rate of 1e-3. We conduct the ex-
periments using an NVIDIA RTX 3090 GPU with 24GB of
VRAM. For the experiments on ShapeNet [10], the training
process takes an average of 5.4 hours for the first stage and
45 hours for the second stage across six categories.
Details of traditional data augmentation. In the experi-
ment of generative data augmentation in the main paper, the
traditional data augmentation methods including random
rescaling (0.8, 1.2), random transfer (-0.1, 0.1), jittering (-
0.005, 0.005), random flipping, random rotation around the
x/y/z axis within a small range (-5◦, +5◦).
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Figure 2. Generated point clouds of airplane class from SeaLion.

Figure 3. Generated point clouds of car class from SeaLion.



Figure 4. Generated point clouds of chair class from SeaLion.

Figure 5. Generated point clouds of guitar class from SeaLion.



Figure 6. Generated point clouds of lamp class from SeaLion.

Figure 7. Generated point clouds of table class from SeaLion.

Figure 8. Comparison of cars generated by SeaLion, Lion & SPoTr [6, 11], and DiffFacto [5]. In ②, the tip of the front grass (yellow) is
misclassified as the roof (blue), while in ③, the roof part is excessively large and incompatible with the body.



Figure 9. Examples of implausible inter-part coherence in shapes generated by DiffFacto [5]. (a) & (b) Too long roof. (c) Hood at an
improper position. (d) The convertible car are not supposed to have a flat roof.

Input point clouds (2048× 3)
Output global latent (1× 128)

Layer 1 Layer 2

PVConv
layers 2 1
hidden dimensions 32 32
voxel grid size 32 16

SA

grouper center 1024 256
grouper radius 0.1 0.2
grouper neighbors 32 32
MLP layers 2 2
MLP output dimensions 32, 32 32, 64

Output layer
MLP layers 2
MLP output dimensions 128, 128

Table 3. Hyper-parameters of the global encoder ϕz .

Input global latent (1× 128), diffusion time step t

Output predicted noise on global latent (1× 128)

Input linear layer output dimension 2048

Time embedding
layer

sinusoidal embedding dimension 128
MLP layers 2
MLP output dimensions 512, 2048

Stacked ResNet

MLP layers 2
MLP output dimensions 2048, 2048
SE MLP layers 2
SE MLP output dimensions 256, 2048

Output linear layer output dimension 128

Table 4. Hyper-parameters of the global diffusion ϵz .



Input
point clouds (2048× 3), segmentation labels (2048× c),
global latent (1× 128)

Output point-level latent (2048× 4)

Layer 1 Layer 2 Layer 3 Layer 4

PVConv
layers 2 1 1 -
hidden dimensions 32 64 128 -
voxel grid size 32 16 8 -

SA

grouper center 1024 256 64 16
grouper radius 0.1 0.2 0.4 0.8
grouper neighbors 32 32 32 32
MLP layers 2 2 2 3
MLP output dimensions 32, 32 64, 128 128, 256 128, 128, 128

GA
hidden dimensions 32 128 256 128
attention heads 8 8 8 8

FP
MLP layers 3 2 2 2
MLP output dimensions 128, 128, 64 128, 128 128, 128 128, 128

PVConv
layers 2 2 3 3
hidden dimensions 64 128 128 128
voxel grid size 32 16 8 8

Table 5. Hyper-parameters of the point-level encoder ϕh. Note: layer 1 refers to the shallowest layer and layer 4 refers to the deepest layer,
c denotes the number of parts.

Input
point-level latent (2048× 4), segmentation labels (2048× c),
global latent (1× 128)

Output point cloud (2048× 3)
Layer 1 Layer 2 Layer 3 Layer 4

PVConv
layers 2 1 1 -
hidden dimensions 32 64 128 -
voxel grid size 32 16 8 -

SA

grouper center 1024 256 64 16
grouper radius 0.1 0.2 0.4 0.8
grouper neighbors 32 32 32 32
MLP layers 2 2 2 3
MLP output dimensions 32, 64 64, 128 128, 256 128, 128, 128

GA hidden dimensions 64+c 128+c 256+c 128+c
attention heads 8 8 8 8

FP MLP layers 3 2 2 2
MLP output dimensions 128, 128, 64 128, 128 128, 128 128, 128

PVConv
layers 2 2 3 3
hidden dimensions 64 128 128 128
voxel grid size 32 16 8 8

Output layer MLP layers 2
MLP output dimensions 128, 3

Table 6. Hyper-parameters of the point-level decoder ξh. Note: layer 1 refers to the shallowest layer and layer 4 refers to the deepest layer,
c denotes the number of parts.



Input
point-level latent (2048× 4), diffusion time step t,
global latent (1× 128)

Output
predicted noise on point-level latent (2048× 4),
predicted segmentation labels (2048× c)

Time
embedding

sinusoidal dimensions 64
MLP layers 2
MLP output dimensions 64, 64

Layer 1 Layer 2 Layer 3 Layer 4

PVConv
layers 2 1 1 -
hidden dimensions 32 64 128 -
voxel grid size 32 16 8 -

SA

grouper center 1024 256 64 16
grouper radius 0.1 0.2 0.4 0.8
grouper neighbors 32 32 32 32
MLP layers 2 2 2 3
MLP output dimensions 32, 64 64, 128 128, 256 128, 128, 128

GA
hidden dimensions 64 128 256 128
attention heads 8 8 8 8

FP
(noise)

MLP layers 3 2 2 2
MLP output dimensions 128, 128, 64 128, 128 128, 128 128, 128

PVConv
(noise)

layers 2 2 3 3
hidden dimensions 64 128 128 128
voxel grid size 32 16 8 8

Output layer
(noise)

MLP layers 2
MLP output dimensions 128, 4

FP
(segmentation)

MLP layers 3 2 2 2
MLP output dimensions 128, 128, 64 128, 128 128, 128 128, 128

PVConv
(segmentation)

layers 2 2 3 3
hidden dimensions 64 128 128 128
voxel grid size 32 16 8 8

Output layer
(segmentation)

MLP layers 2
MLP output dimensions 128, c

Table 7. Hyper-parameters of the point-level diffusion ϵh. Note: layer 1 refers to the shallowest layer and layer 4 refers to the deepest
layer, c denotes the number of parts.
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