
SegAgent: Exploring Pixel Understanding Capabilities in MLLMs by Imitating
Human Annotator Trajectories

Supplementary Material

A. Discussion
A.1. Computational complexity Trade-off
We agree that error accumulation is a potential issue, and
longer sequences may lead to worse results if we perform
fixed-length greedy decoding. However, the proposed PRM
can effectively alleviate this issue. The experimental results
are as follows.

Table 2. Performance comparison under different steps.

Steps 1 3 5 7

w/o PRM 71.53 73.67 73.88 68.22
w/ PRM 71.53 72.98 75.21 75.43

A.2. Limitations
Failure cases. Failures mainly arise from (1) incorrect tar-
get localization in the first step and (2) inaccurate coordi-
nate outputs in refinement steps, particularly at boundaries
(wrong point reaching the background area), resulting in the
wrong mask.(see Fig. 8)

We believe that the current bottleneck limiting the
model’s performance lies mainly in the fine-grained pixel-
level localization ability of MLLMs. On the HRES dataset,
the main reason for the model’s failure is the inaccurate lo-
cation of the output points, such as the wrong point being
outside the object’s boundary.

B. More Details about algorithm
B.1. Trace Generation
In Section 4.1 of the main text, we introduced how Fsim is
used to simulate user trajectories. Here, we provide a more
detailed illustration of this process in the form of Python
pseudocode (see Alg. 3).

To further enhance the diversity of annotation trajecto-
ries and improve SegAgent’s mask refinement capabilities,
we introduced additional initial states beyond the empty
mask. These include masks generated from bounding boxes
and masks created by random sampling points.

B.2. Comparision with StaR
As mentioned in Section 4.3 of the main text, we have in-
troduced the differences between our method StaR+ and the
original StaR algorithm [70]. Here we first present the orig-
inal StaR algorithm (see Alg. 4). In addition to the differ-
ences mentioned in the main text, another difference is that
the original StaR algorithm will only fine-tune the model
with the newly generated trajectory dataset Dn, while our

Algorithm 3 Pseudo code of trace generation

n: Maximum number of clicks
image: The image to be segmented
gt_mask: Ground truth mask of current image
pred_mask: The predicted mask according to

clicks in click_list

click_list = []
pred_mask = np.zeros_like(image)

Iterate n times
for i in [1, n]:

fn = gt_mask & (˜pred_mask) # false negative
fp = (˜gt_mask) & pred_mask # false positive
fn_dist = cv2.distanceTransform(fn_mask)
fp_dist = cv2.distanceTransform(fp_mask)
fn_max_dist = max(fn_dist)
fp_max_dist = max(fp_dist)

if (fn_max_dist > fp_max_dist): # Next click
should be positive

click_y, click_x = np.where(fn_dist ==
fn_max_dist)

is_positive = 1
else: # Next click should be negative

click_y, click_x = np.where(fp_dist ==
fp_max_dist)

is_positive = 0

click_list.append((click_x, click_y,
is_positive))

pred_mask = model.predict(image, click_list)

StaR+ will fine-tune the model with the merged dataset of
Dtraj and Dn. This is because the original StaR algorithm
is designed for reasoning tasks that lack a simulate function
Fsim to generate trajectories. In our task, Dtraj retains a lot of
useful information because it generates approximately op-
timal trajectories. Therefore, we merge it with Dn to fine-
tune the model.

Algorithm 4 SegAgent Policy Improvement with StaR

1: Input: The SegAgent model trained on the generated
trajectory dataset Dtraj = {(Ii,M i

target, P
i, T i)}mi=1

2: S0 ← SegAgent
// Initialize the SegAgent model

3: D0 ← Dtraj
// Initialize the trajectory dataset

4: for n = 1 to N do
5: T̂ i ← Sn−1(I

i,M i
target, P

i) for all i ∈ [1,m]
// Perform trajectory generation

6: Dn ← {(Ii,M i
target, P

i,Filter(T̂ i)) | i ∈ [1,m]}
// Filter trajectories based on the reward function

7: Sn ← train(S0, Dn)
// Fine-tune the model on the filtered dataset

8: end for

B.3. More Details about Process Reward Model and
Tree Search

In Section 4.4 of the main text, we have shown the process
of PRM-guided tree search in the form of pseudocode. To
facilitate readers’ understanding, we further illustrate this
process in Fig. 5

C. Implementation Details
C.1. Model Architecture and Hyperparameters
For SegAgent-LLaVA, we initialized the model with project
weights provided by [69]. Subsequently, we performed a
second-stage fine-tuning using the annotation trajectories
generated in our framework. Following the implementation
in [69], we adopted a ConvNeXt-L [34] CLIP model as the
vision encoder, extracting image features from the ”res4”
stage. The model was trained using the AdamW [36] opti-
mizer with a learning rate of 1× 10−5 and a cosine anneal-
ing scheduler [35] for two epochs. We set the batch size to
16. During both training and inference, input images were
resized to 512 × 512. The maximum sequence length was
set to 2048 tokens.

For SegAgent-QWen, we initialized the model using
the Qwen-VL-Chat weights provided in the official imple-
mentation [2]. Fine-tuning was conducted using the full-
parameter fine-tuning script provided by the authors, with
only the ViT module frozen. Specifically, input images
were resized to 448 × 448, and 256 queries were used for
the vision-language adapter. The model was trained using
the AdamW optimizer with a learning rate of 1 × 10−5, a
cosine decay learning rate schedule, and a batch size of 128
for two epochs. The maximum sequence length was set to
2048 tokens.

For SAM [17] and SimpleClick [30], we used the offi-
cial pre-trained weights provided by their respective repos-
itories. Both models are based on a ViT-large architecture.

C.2. Prompt Design
Here we provide a detailed introduction to the specific de-
sign of the input prompt P for MLLMs, as shown in Fig. 6.
The design of the prompt is to guide the model to gener-
ate more accurate annotations, including two operations:
adding a positive point, adding a negative point. Adding a
positive point is to expand the mask, and adding a negative
point is to shrink the mask.

D. Visualization Analysis
D.1. Comparison of Dataset Quality
In Section 5.2 of the main text, we quantitatively analyzed
the complexity of different datasets. Here we now provide a
qualitative comparison of dataset quality through visualiza-
tion. Fig. 7 illustrates examples of images and annotations

from various datasets, allowing readers to gain a deeper un-
derstanding of the characteristics of each dataset.

From the visualization, we can observe that the annota-
tion masks in ThinObject5k-TE and DIS5K are indeed more
complex and precise. For instance, in the ”Bridge” and
”Sailboat” examples from DIS5K, the annotations exhibit
intricate details such as hollow structures and fine lines.
These characteristics highlight the high annotation quality
and attention to detail in these datasets.

In contrast, RefCOCO primarily focuses on scenes with
people and common objects. Although the captions are
longer, the annotations contain more noise. For example,
while the masks roughly cover the objects, there are sig-
nificant issues with mislabeling and omissions at the edges.
Additionally, RefCOCO struggles to handle intricate details
such as hollow regions effectively.

In summary, ThinObject5k-TE and DIS5K offer higher-
quality and more complex annotations, making them better
suited for evaluating and exploring SegAgent’s ability to re-
fine masks over multiple steps.

D.2. Visualization of Predicted Trajectories
We visualized the original predicted trajectories of SegA-
gent, as shown in Fig. 8. Note that PRM and Tree Search
were not used in this visualization. The first two rows show
the results of using Qwen-box as the first action combined
with SAM for mask refinement. Although we visualized the
clicks at Iteration 0, the first click was not actually input to
SAM. In subsequent iterations, we used the clicks predicted
by SegAgent and Qwen-box together as input to SAM. The
last two rows show the results of using only clicks as ac-
tions combined with SimpleClick for mask annotation. It
can be observed that SegAgent has indeed learned the rules
of annotation and acquired an understanding of objects. It
can refine masks step by step through positive and negative
points.

E. More Experiments
E.1. Annotation Filtering
In Section 5.3 of the main text, we analyzed SegAgent’s
capabilities in mask annotation and mask refinement. Here,
we further explore and demonstrate its ability in annotation
filtering.

We model annotation filtering as a regression task, where
the model predicts the Intersection over Union (IoU) be-
tween the current mask and the ground truth (GT) mask.
This functionality is a key feature of SegAgent’s PRM. In
practice, by setting a reasonable threshold, we can effec-
tively filter out low-quality masks.

To evaluate this ability, we constructed a test set based
on the validation set of RefCOCO. Specifically, we gener-
ated masks of varying quality by randomly sampling posi-

Figure 5. An illustrative example of PRM-guided tree search. The model predicts the reward at each step and selects the action with the
highest reward to generate the next mask.

Prompt Design for SegAgent
You are a highly skilled segmentation annotator. We have provided you with an image and an initial mask marked by a semi-transparent
green mask that roughly covers the object described below. Your task is to refine this mask to make it as accurate as possible. Based on the
given image and the mask, perform the following actions:

1. Positive Point (x, y):
Add a positive point if any part of the object is not covered by the mask. This will expand the mask to include the missing area. Example:
Add a positive point on any corner or edge of the object that the mask does not cover.

2. Negative Point (x, y):
Add a negative point if an area outside the object is incorrectly included in the mask. This will refine the mask by excluding unnecessary
regions. Example: Add a negative point where the mask extends into the background or any non-object area.

The description of the object is as follows: <description>.

Figure 6. The prompt provides detailed instructions for refining a segmentation mask with three possible actions: adding a positive point,
adding a negative point. The red part indicates user-specific input, such as object descriptions.

tive and negative points within the GT bounding boxes. The
PRM was then used to predict the IoU of these masks.

We assessed the annotation filtering capability of the
PRM using several standard regression metrics, including
Mean Squared Error (MSE), Mean Absolute Error (MAE),
Pearson Correlation Coefficient, and Spearman Correlation
Coefficient.

Based on the results in Tab. 3, SegAgent-LLaVA outper-
forms SegAgent-Qwen across all evaluated metrics, indicat-
ing its superior ability in annotation filtering. These results
are consistent with the analysis in Section 5.3 of the main
text regarding the mask refinement capability. We hypoth-
esize that the differences in performance may stem from
the distinct model architectures. Specifically, the Q-former

Table 3. Evaluation of SegAgent’s Annotation Filtering Ability.
Lower MAE and MSE indicate better accuracy, while higher Pear-
son and Spearman correlation coefficients reflect stronger agree-
ment with ground truth IoU.

Model MAE ↓ MSE ↓ Pearson ↑ Spearman ↑
SegAgent-Qwen 6.88 193.98 0.90 0.87
SegAgent-LLaVA 5.58 175.35 0.91 0.90

structure in SegAgent-Qwen might lead to some loss of de-
tail, which could explain its slightly inferior performance
compared to SegAgent-LLaVA.

However, from an overall perspective, both SegAgent-

DIS5K

Autumn leaves Excavator Shoelaces Toilet brush

ThinObject5k-TE

Bridge Music Player Floor lampSailboat
Refcoco

Girl in pink Batter Cake in lower middle Girl facing us

Figure 7. Examples of Images and Annotations from Various Datasets. The figure showcases representative samples from three datasets:
ThinObject5k-TE, DIS5K, and RefCOCO. Each row represents a dataset, with images and corresponding annotations highlighting different
objects and scenes. The annotations (green overlays) demonstrate the varying levels of detail and complexity across datasets.

LLaVA and SegAgent-Qwen exhibit high correlation coef-
ficients and relatively low MAE and MSE. This indicates
that the PRM is highly effective in predicting the mIoU
of masks, enabling the filtering of low-quality masks with
strong reliability.

E.2. Mask color

By default, we visualize the current segmentation results
using a semi-transparent green mask. Here, we further in-
vestigate the impact of mask color on segmentation perfor-
mance. The results in Table 4 show the impact of mask
color on segmentation performance, measured by mean In-
tersection over Union (mIoU). The three tested mask col-
ors—green, blue, and red—yield nearly identical perfor-

Table 4. Evaluation of Mask Color on Segmentation Perfor-
mance.

Mask Color Green Blue Red

mIoU 0.749 0.750 0.749

mance. This suggests that the choice of mask color has
minimal, if any, effect on segmentation performance. The
consistent mIoU across different colors indicates that the
model’s segmentation capability is robust to visual varia-
tions in mask color.

1994

Caption: The pants of the male (SAM with box)

Caption: The brown chicken in front of more chickens (SAM with box)

Iteration 0 Iteration 1 Iteration 2 Iteration 3

Iteration 0 Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6

Caption: Fat legs (SimpleClick)

Iteration 0 Iteration 1 Iteration 2 Iteration 3

Caption: Left person to us left side (SimpleClick)

Iteration 0 Iteration 1 Iteration 2 Iteration 3

Figure 8. Predicted trajectories of SegAgent using SAM and SimpleClick. We visualize current action at and the resulting mask Mt+1

in one image. Red points represent positive points, and blue points represent negative points.

Table 5. Evaluation of Different Initial Actions on SegAgent
Performance.

Initial Action NO box Qwen Box Self Box

refcoco(val) 77.81 78.01 77.85
refcoco+(val) 70.88 70.86 70.50
refcocog(test) 73.13 74.62 74.33

E.3. Init Action
Since SAM can accept both boxes and clicks as input, we
investigated the impact of different initial actions on seg-
mentation performance. In Table 5, ”NO box” indicates us-
ing only clicks as actions, ”Qwen Box” represents using the
box predicted by Qwen-VL-chat as the action, and ”Self
Box” denotes using the box predicted by SegAgent-Qwen
itself as the action (an additional task during training). The
results indicate that the choice of initial action has a min-
imal impact on segmentation performance, suggesting that
the model is robust to the selection of initial actions. Over-
all, using Qwen Box as the initial action yields slightly bet-
ter performance than the other two initial actions. To ensure
a fair comparison, we selected Qwen Box as the initial ac-
tion for SAM.

E.4. Coordinate Format
We also investigated the representation of coordinates. For
SegAgent-Qwen, we used the [0, 1000) format to repre-
sent the coordinates of bounding boxes, as Qwen itself has
grounding capabilities. For SegAgent-LLaVA, we explored
whether to use integers in the range [0, 1000) to represent
relative positions or decimals in the range [0, 1). Table 6

Table 6. Evaluation of Coordinate Format on Segmentation
Performance.

Coordinate Format [0, 1) [0, 1000)

mIoU 0.749 0.747

shows the impact of relative position representation on seg-
mentation performance. The results indicate that the two
coordinate formats yield nearly identical performance, sug-
gesting that the model is robust to the choice of coordinate
format. For SegAgent-LLaVA, we selected decimals in the
range [0, 1) to represent relative positions.

