
Semantic-guided Cross-Modal Prompt Learning for Skeleton-based Zero-shot
Action Recognition

Supplementary Material

In this supplementary material, we present additional in-
formation to 1) explain the remaining design choices not
mentioned in the main paper; 2) support the additional ab-
lation study on SCoPLe and list the auxiliary performance
visualization not included in the main paper; 3) finalize the
compatibility experiments for SCoPLe equipped with vari-
ous skeleton backbones and label semantic enrichment; and
4) explore model versatility on other image-based tasks.

1. Extra Implementation Design Choices

1.1. Implementation Details of Common Prompting
Baselines

In Tab. 1 of the main paper, we examine the application of
various common domain universal prompting methods to
address the zero-shot skeleton action recognition (ZSSAR)
problem. We begin our ablation study by establishing a
baseline whose text encoder is a standard CLIP-ViT-B/32
text encoder and consists of an MLP projection layer that
maps the output features from the pre-trained skeleton back-
bone to the text embedding space. The subsequent baselines
are established with the same projection layer configura-
tion. Especially, CLIP-CoOp utilizes the prompting vectors
proposed by [49] and learns to incorporate prompt-based
tuning on the linguistic side. We have chosen not to in-
clude the performance evaluation of its extension method,
CoCoOp, because its primary contribution is generating dy-
namic prompting on the image side, which is not compatible
with our data inputs. CLIP-MaPLe references the original
method in [18], which combines prefix prompting from [49]
with its original layer-level prompting modules that facilitate
both image and textual encoding processes. We omit its
module for image processing and retain only its designs for
enhancing label semantics. Finally, to provide a horizontal
comparison with the text prompting module in our model,
we remove any prompting adjustments from the skeleton
branch and use only the prefix prompting along with our
proposed layer-wise dual-stream language prompting mod-
ule to build CLIP-DSLP and contrast it with the previous
three baselines. The results indicate that, unlike the previous
three baselines, our method maintains positive improvements
compared to the results of directly using CLIP.

1.2. Design Choices of δ for Generalized Zero-shot
Skeleton Action Recognition

We used a simple gating mechanism to implement general-
ized ZSSAR in our solution, establishing an entropy thresh-

Testing Protocol δ

General
NTU-60 55/5 split 4.007331371

48/12 split 3.871198177

NTU-120 110/10 split 4.700477600
96/24 split 4.564345360

Random Split
NTU-60 55/5 split 4.007330418
NTU-120 110/10 split 4.700477600
PKU-MMD 46/5 split 3.828638792

Table 1. Hyperparameter selection of δ for each testing protocol
in the General Performance experiments and the Random Split
experiments.

old of δ for binary classification based on the logits calcu-
lated from Ltest(V

x
y , Fy). Since each testing split protocol

has different ratios and distributions of seen and unseen
classes, we found that using a constant δ across all experi-
ments often fails. Following [14], we set aside a few samples
from the original NTU dataset to build a gating validation
set for each split arrangement and conducted an individual
hyperparameter grid search on δ. We selected the best hyper-
parameter (see Tab. 1) for each experiment and used it for
the final performance evaluation.

2. Extra Experiment Results

2.1. Visualized Unseen Class Accuracy

Following the operations in SA-DVAE [22], we conducted
a similar per-class accuracy visualization and compared it
to the results in [22] using the same testing protocol in the
random split experiment on the 55/5 split of NTU-60. The
previous paper demonstrated a significant improvement in
achieving preliminary discrimination between classes that
share very similar visual appearances at a whole-skeleton
scale. Specifically, the unseen class “wear a shoe” has a very
similar visual appearance and textual constitution to the seen
class “take off a shoe”, while also being semantically sur-
rounded by other interconnected actions like “standing up”.
This makes naive alignment easily lean towards classifying
labels 9 and 16 into the same category, as they both share
similar visual patterns learned from the seen class “take off a
shoe”. [22] mitigated this issue by strictly disentangling the
label-related skeleton features for more robust and refined
cross-modal alignment synergy. In our model, we used dual-
stream language prompting to effectively inherit the original
semantic generalization ability of the language model and
interacted it with joint-level prompts to reach a similar effect
in skeleton feature tuning as [22] for refined cross-modal
alignment. The results in Fig. 1 show that not only could
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Figure 1. Unseen per-class accuracy of the 55/5 split testing protocol on the NTU-60 dataset. The unseen split {1, 9, 16, 29, 47} is used in a
challenging run of the random-split GZSL experiments.

our method compete with the prediction accuracy of class
16 from [22], but we also improved the overall model perfor-
mance on other unseen classes.

2.2. Layer-level Dual-stream Fusion

Figure 2. An example illustration of learned α and 1−α belonging
to each Transformer layer of the CLIP text encoder for SCoPLe
trained on the 110/10 testing split of NTU-120.

In our dual-stream language prompting module, the orig-
inal CLIP text encoder receives two streams of label text
encoding flows: the original and prompted encoding streams.
To maintain the interaction between the two streams, we
preserve a learnable layer-level α throughout each prompted
Transformer layer. Fig. 2 provides an illustrative example of
all learned α values for each layer of a pre-trained CLIP text
encoder for SCoPLe, under the experiment protocol of the
110/10 testing split on NTU-120. According to the weighted
aggregation in Eq. (5) in the main paper, α controls the con-
tribution weights of the prompted encoding contexts, while
1− α controls the weights of the original encoding contexts.
The results show that αs vary across layers, with significant
changes beyond the eighth layer (0.3 to 0.63), indicating the
different importance assigned to prompt tuning. We find
that for some layers, they indeed benefit from the original
semantics and demonstrate gradient learning that increases
the attention guidance from the original encoding stream.

2.3. Visualization of Adaptive Visual Representa-
tion Sampler

To ensure cross-modal prompting synergy, we design the
visual-side prompting to be compatible with a joint-level
feature format and utilize an Adaptive Visual Representation
Sampler to apply text-semantic-guided weighted sampling
on real joint features and skeleton prompts. Fig. 3 provides
an example visualization of the sampling weights predicted
by a trained SCoPLe against the prompted skeleton feature of
an incoming example belonging to a given seen/unseen class
in the testing protocol of a 110/10 split on NTU-120. Based
on the visualization, we can come up with two observations.
For seen class classification, the method ensures high pre-
diction precision and effectively resolves challenging recog-
nition tasks, such as distinguishing between “reading” and
“writing”, by learning to focus on the visual features related
to the joints located in various positions for the hands. Since
the training stage emphasizes direct pattern learning for seen
classes, prompting has a minor contextual influence and pri-
marily functions as feature tuning for adapting cross-modal
knowledge transfer. For unseen classes, the model can still
allocate reasonable visual focus to collect semantically rel-
evant skeleton feature cues by relying on the cross-modal
contextual supplements from the visual prompts. For ex-
ample, for “punch other person”, SCoPLe spends balanced
attention to the joints around the spine and the tip of the
left hand. For “drop”, SCoPLe concentrates attention on the
joints around the left thumb.

2.4. Extra ZSL Split Study

Here we provide more results for skeleton-based ZSL using
more splitting protocols from [51]. Considering the utiliza-
tion rate of the original CLIP semantic knowledge during
the evaluation, we compared our method against the base-
line results of using only the CLIP encoder for cross-modal
alignment without any feature refinement from the previous
paper. According to Tab. 2, as the proportions of the unseen
classes increased, the original labels encountered transfer
limitations, causing both models to experience decreased
accuracies. However, with the support of our prompting
modules, SCoPLe can mitigate the deterioration to a certain



Figure 3. An illustrative example of semantic-guided sampling weights for each skeleton joint and joint-level prompt in a given action
sample. One row provides the sampling weights for all joints/prompts of a data sample that belongs to the action class labeled on the left.
Each cell represents a single joint feature or prompt vector for the corresponding sample, while PV is shared across all inputs. Green action
samples represent instances of seen classes, while red action samples represent instances of unseen classes. Each joint is manually assigned
to a known body part for clarity.

extent.

NTU-RGB+D 60
55/5 split 48/12 split 40/20 split 30/30 split 20/40 split

CLIP 62.58 33.16 27.15 16.29 7.23
SCoPLe 84.10 52.96 32.00 18.17 8.46

NTU-RGB+D 120
110/10 split 96/24 split 80/40 split 60/60 split 40/80 split

CLIP 39.13 48.15 21.31 14.12 5.24
SCoPLe 63.51 52.17 25.31 15.67 7.39

Table 2. ZSL metrics (%) for PURLS [51] and SCoPLe on the
additional split experiments from [51].

2.5. Extra Ablation Study

Tab. 3 presents our extra ablation study conducted on our
method, combining each module according to different as-
sembly strategies. This includes using non-dual-stream lan-
guage prompting with the full skeleton prompting module
(first row) and using skeleton prompting without the sampler
and the full DSLP (second row). The resting ablation study
has already been fully explored in the main paper. We use
the full version of SCoPLe as the contrast baseline and carry
out the experiments using the testing protocols for general
performance evaluation on NTU-60 and NTU-120. Consis-
tent with the conclusions we reached in Sec.4.4. in the main
paper, incorporating partial prompting mechanisms provides
only limited and unstable improvements in prediction.

3. Combination with Existing Methods
3.1. Skeleton Extractors

Our method is a powerful, effective, and flexible plug-in
framework that is compatible with various skeleton back-
bones to conduct cross-modal alignment with CLIP, provided

that the encoder output is in the format of joint-shaped fea-
tures. In Tab. 4, we follow [51] and use different modern
skeleton backbones to verify the compatibility of SCoPLe.
We show that SCoPLe can efficiently raise the upper limit
of ZSSAR performance for each skeleton backbone with
semantic assistance from CLIP.

3.2. Label Semantic Enrichment

In [50] and [22], the authors propose extension experiments
that utilize a large language model (such as ChatGPT) to
augment class descriptions with richer action-related infor-
mation. We report results using the same settings for both
the general performance and the random split testing proto-
cols. As shown in the last two rows of Tab. 5, our prompting
method can still adapt to the new semantic environment and
further improve the results obtained with the original labels.
Similarly, in the horizontal performance comparison with
the results in [22], although the degree of optimization on
ZSSAR is not as pronounced as in SA-DVAE, our method
benefits more from the label semantic enrichment in improv-
ing GZSSAR results.

4. Versatility of DSLP
Our proposed tuning designs of DSLP focus on enhancing
CLIP’s generalization to unseen classes by reducing prompt
tuning biases from seen-class training. While the primary
goal is to address a ZSSAR test case as outlined in the main
paper, we believe that our feature-level approach can also
theoretically benefit tasks such as image-based base-to-novel,
few-shot learning, and other similar scenarios when novel
class discrimination is involved. We applied our text prompt-
ing approach (DSLP) to the linguistic branch of MaPLe [18]
and conducted some classic base-to-novel generalization
experiments recorded in [18] on OxfordPets, Caltech101,



Model
NTU-60 NTU-120

s55/5 split s48/12 split s110/10 split s96/24 split
ZSL S U H ZSL S U H ZSL S U H ZSL S U H

SCoPLe w. text prompt (no dual) + skel. prompt (full) 70.20 59.01 56.26 57.60 39.60 36.31 79.73 49.89 62.34 51.21 48.35 49.74 47.01 56.87 45.12 50.30
SCoPLe w. text prompt (full) + skel. prompt (no sampler) 71.78 77.27 53.93 63.52 42.97 54.03 59.09 56.45 69.65 64.62 55.35 59.62 50.73 52.38 50.96 51.66
SCoPLe (full) 84.10 69.60 71.94 70.75 52.96 54.49 61.83 57.93 74.53 63.51 61.08 62.27 52.17 53.33 51.18 52.23

Table 3. The extra ablation analysis for selectively combining each module in SCoPLe across all testing splits for ZSL and GZSL on the
NTU datasets. Other ablation results are already listed in the main paper.

Skeleton Backbone
NTU-60

s55/5 split s48/12 split
ZSL S U H ZSL S U H

AA-GCN 51.07 28.00 84.44 42.06 24.89 38.71 74.73 51.00
AA-GCN (w. SCoPLe) 61.69 64.48 63.65 64.06 31.61 61.29 59.36 60.31
CTR-GCN 72.48 29.52 76.89 42.67 30.96 71.21 40.45 51.59
CTR-GCN (w. SCoPLe) 74.75 76.37 69.18 72.60 36.71 54.45 68.99 60.86
DG-GCN 68.47 60.20 61.11 60.65 36.99 72.23 42.12 53.21
DG-GCN (w. SCoPLe) 76.99 82.23 62.12 70.77 42.92 59.08 64.79 61.81
Shift-GCN 62.58 41.16 80.63 54.50 33.16 53.78 58.35 55.97
Shift-GCN (w. SCoPLe) 84.10 69.60 71.94 70.75 52.96 54.49 61.83 57.93
Shift-GCN + augmented text 70.88 65.64 56.77 60.88 41.03 61.41 53.10 56.96
Shift-GCN (w. SCoPLe) + augmented text 82.52 81.72 68.69 74.64 54.20 56.81 61.91 59.25

Table 4. ZSL & GZSL metrics (%) for the CLIP baseline and
SCoPLe equipped with different skeleton backbones and LLM-
augmented class descriptions on the general performance testing
protocol of the NTU-60 dataset.

Method
NTU-60 NTU-120
55/5 split 110/10 split

ZSL S U H ZSL S U H

SMIE [50] 65.08 / / / 46.4 / / /
SMIE + augmented text 70.89 / / / 52.04 / / /
SA-DVAE [22] 84.2 78.16 72.6 75.27 50.67 58.09 40.23 47.54
SA-DVAE + augmented text 87.61 74.54 76.5 75.51 57.16 53.32 48.36 50.72
SCoPLe 83.72 75.32 80.17 77.67 53.34 70.47 44.29 54.08
SCoPLe + augmented text 84.34 77.38 75.30 76.32 56.73 77.89 45.25 57.24

Table 5. ZSL & GZSL metrics (%) for SMIE, SA-DVAE and
SCoPLe with LLM-augmented class descriptions on the random
split testing protocols of the NTU-60 and NTU-120 datasets.

EuroSAT, DTD, and FGVCAircraft to evaluate the versa-
tility of our module. As shown in Tab. 6, our method can
achieve the most consistent harmonic prediction means in
these scenarios and demonstrate greater robustness in both
base and novel prediction advantages in most cases.

OxfordPets Caltech101 EuroSAT
Base Novel HM Base Novel HM Base Novel HM

CLIP 91.17 97.26 94.12 96.84 94.00 95.40 56.48 64.05 60.03
CoOp 93.67 95.29 94.47 98.00 89.81 93.73 92.19 54.74 68.69
Co-CoOp 95.20 97.69 96.43 97.96 93.81 95.84 87.49 60.04 71.21
MaPLe 95.43 97.76 96.58 97.74 94.36 96.02 94.07 73.23 82.35
Ours (DSLP) 95.85 98.48 97.15 98.12 95.10 96.58 95.16 73.98 83.24

DTD FGVCAircraft
Base Novel HM Base Novel HM

CLIP 53.24 59.90 56.37 27.19 36.29 31.09
CoOp 79.44 41.18 54.24 40.44 22.30 28.75
Co-CoOp 77.01 56.00 64.85 33.41 23.71 27.74
MaPLe 80.36 59.18 68.16 37.44 35.61 36.50
Ours (DSLP) 79.59 63.04 70.35 37.53 36.86 37.19

Table 6. Comparison with CLIP [30], CoOp [49], Co-CoOp [48]
and MaPLe [18] base-to-novel generalization for image recogni-
tion.


