SkySense-O: Towards Open-World Remote Sensing Interpretation
with Vision-Centric Visual-Language Modeling
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Figure 1. Comparison between the Sky-SA dataset and results produced directly using SAM. Comprehensive segmentations of all pixels
in remote sensing with semantic features are outstandingly shown in our dataset.
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1. Key Advantages over SAM

In this work, we aim to achieve pixel-level open-world re-
mote sensing interpretation. In the domain of natural im-
ages, a common approach leverages the combination of two
foundational models: the Segment Anything Model (SAM)
and Contrastive Language—Image Pre-training (CLIP). This
combination method decomposes the open-world interpre-
tation task into two stages, namely segmentation and recog-
nition. Although these approaches have achieved signifi-
cant success on natural images, we find that both SAM and
CLIP exhibit suboptimal performance when applied to re-
mote sensing images. This observation motivates us to de-
velop a RS-specific foundational model. In this section, we
primarily discuss the segmentation limitations of SAM in
remote sensing images, which is the main reason that drives
us to annotate the Sky-SA dataset.

Why Not Directly Use SAM? Despite numerous existing
works [10, 12, 19] that directly employ SAM to generate
pre-segmented results, we observe that SAM often strug-
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Figure 2. Distribution statistics of the number of category texts in the Sky-SA dataset.

gles to successfully segment all relevant regions in remote
sensing images (see Fig. 1). This limitation is particularly
pronounced in the following two conditions:

1) Land-cover Elements (e.g., overpasses, roads, soil): As
primary categories in remote sensing imagery, land-cover
elements frequently span extensive spatial areas and often
intersect or overlap with one another. Such intricate spa-
tial distribution present significant challenges for SAM in
achieving accurate segmentation.

2) Targets with Large Scale Variations (e.g., vehicles and
buildings): The targets in remote sensing images usually
exhibit substantial variations in spatial scales. However,
when performing zero-shot segmentation, SAM typically
relies on spatially uniform sampling of visual prompts to
guide the segmentation process. This strategy makes it dif-
ficult for SAM to effectively handle situations with large-
scale variations. For example, if the sampling interval of
point prompts is large, small targets may be missed. Con-
versely, if the sampling interval is small, large targets may
be unnecessarily subdivided into multiple parts, increasing
the complexity of assigning semantic labels to the segments.

2. Sky-SA Dataset Details

In this section, we present numerous examples from Sky-
SA dataset to illustrate the high quality and diversity of the
annotated masks, which we have extensively verified. Be-
yond its use in training SkySense-O to be robust and general,
we hope the Sky-SA dataset becomes a valuable resource
for research aiming to build new foundation models.

The Necessity of Manual Annotation. Despite the pop-
ularity of current self-supervised paradigms, achieving
high fine-grained local segmentation remains challenging
through self-supervision manner alone. This is probably
due to insufficient propagation of local image-text pair data
within the network. Therefore, we adopt the same manual
annotation strategy as SAM, namely a closed loop of model
prediction and manual correction. Specifically, the data an-
notation can be divided into two stages: assisted-manual,
semi-automatic. In the first stage, we utilize GPT-4V to as-
sign anticipated word labels to the images. We then apply
Grounding DINO and SAM to sparsely pre-annotate target
categories within the images. Building upon these prelim-
inary annotations, annotators employ adding and erasing
tools to adjust the category labels and fill in any missing
annotations, similar to a classic segmentation setup. In the
second stage, SkySense-O already possess certain segmenta-



Figure 3. Example images and annotations with open texts and masks from our newly proposed dataset, SKy-SA, which is characterized
by its textual openness and high density of masks.



Figure 4. Another images and annotations examples with open texts and masks from our newly proposed dataset, Sky-SA, which is
characterized by its textual openness and high density of masks.



Figure 5. Another images and annotations examples with open texts and masks from our newly proposed dataset, Sky-SA, which is
characterized by its textual openness and high density of masks.
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Figure 6. Zoomed version of the proposed vision-centric knowledge graph for more node details.

Model ‘ Publication ‘ plane ‘ soccer ball field | small vehicle ‘ harbor ‘ others ‘ Average
SAN [17] CVPR 2023 | 23.54 5.03 24.38 2.37 26.75 16.41
CAT-SEG [3] | CVPR 2024 | 28.08 6.72 17.07 443 71.93 25.64
SkvSense-O - 33.36 43.58 31.74 17.55 90.73 43.39
y - (+5.28) (+36.86) (+7.36) (+13.12) | (+18.80) | (+17.75)

Table 1. Zero-shot remote sensing semantic segmentation performances for unseen classes on the SOTA dataset. Bold indicates the highest

performances in mloU (%).

Model ‘ Publication ‘ A220 | dry cargo ship ‘ intersection ‘ liquid cargo ship ‘ motorboat ‘ excavator others Average
SAN [17] CVPR 2023 0.00 4.50 0.26 2.81 0.18 0.27 13.03 3.01
CAT-SEG [3] | CVPR 2024 0.01 0.21 1.49 3.12 0.25 0.75 63.33 9.88
SkvSense-O - 2.26 12.00 3.28 10.04 2.06 2.65 95.21 18.21
¥ - (+2.25) (+7.50) (+1.79) (+6.92) (+1.81) (+1.90) | (+31.88) | (+8.33)

Table 2. Zero-shot remote sensing semantic segmentation performances
performances in mloU (%).

tion abilities and we use it to automatically generate masks
for new RS images. Annotators can then perform correc-

for unseen classes on the FAST dataset. Bold indicates the highest

tions and completions on the predictions from SkySense-O,
mirroring the process in the first stage. This closed-loop
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-Goal-

Given a source entity and a target entity list observed from remote sensing images, where each target entity is enclosed in quotation marks and separated by comma, you
are an intelligent assistant that helps a human analyst to measure the appearance similarity between the source entity and each target entity from the target entity list.

-Steps-

1. Describe the common shape, color, material of the source entity and all target entities in remote sensing images.
- entity_name: Name of the source entity

- entity_type: Source entity / Target entity

- entity_description: Comprehensive description of the source entity's appearance in remote sensing images

Format each entity as (“entity” {tuple_delimiter}<entity name>{tuple_delimiter}<entity type>{tuple delimiter}<entity_ description>{tuple_ delimiter})

2. From the entity attibutes in step 1, score the imaging appearance similarity between the source entity and each target entity in the target entity list.
For each pair of source entity and target entity, extract the following information:

- source_entity: name of the source entity, as identified in step 1

- target_entity: name of the target entity, as identified in step 1

- relationship_strength_score: a numeric score indicating strength of the relationship between the source entity and target entity

- relationship_description: explanation as to why you give the relationship strength score between the source entity and the target entity.

Format each relationship as
("relationship" {tuple delimiter}<source entity>{tuple delimiter}<target entity>{tuple delimiter}<relationship_strength score>{tuple delimiter}<relationship descript
ion>)

3. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use ** {record_delimiter}** as the list delimiter.
4. When finished, output {completion_delimiter}. Do not output full information; the output format MUST be following example.

-Audience-
The output audience is the semantic segmentation algorithm in remote sensing, where the labeled entity in the ground truth will be replaced with the target entity you
give high score, but the mask label will remain unchanged. After the entity is changed, the source mask can still match the replaced entity.

-Examples-

Example 1:

Source entity: “Apple tree”
Target entity list:
[“Apple tree”, “Apple”, “Orange tree”, “The apple tree”]

M L

Output:

(“relationship” {tuple_delimiter}“Apple tree” {tuple_delimiter}“Apple tree” {tuple_delimiter}”10”{tuple delimiter}’Apple tree’ and ’Apple tree’ represent the same
object on remote sensing images.) {record delimiter}

(“relationship” {tuple_delimiter}“Apple tree” {tuple_delimiter} “tree” {tuple delimiter}”10” {tuple delimiter}’Apple tree’ mask can be relaced by ‘tree’ mask because
they have similar visual characteristics in remote sensing semantic segmentation.) {record_delimiter}

(“relationship” {tuple_delimiter} “tree” {tuple_delimiter}“Apple tree” {tuple_delimiter}”7” {tuple_delimiter} tree’ mask often not be relaced by ‘apple tree’ mask because
‘apple tree’ is just a subset of ‘tree’ in remote sensing semantic segmentation.) {record_delimiter}

(“relationship” {tuple_delimiter}“Apple tree” {tuple_delimiter} “Apple” {tuple_delimiter}”0” {tuple_delimiter}’Apple tree’ mask can not be relaced by ‘Apple’ mask
because they have completely different visual shapes and colors in remote sensing semantic segmentation.){record_delimiter}

("relationship" {tuple delimiter}"Apple tree" {tuple delimiter}"Orange tree" {tuple delimiter}”7” {tuple delimiter}’Apple tree’ mask may be relaced by ‘Orange tree’
mask because they are both trees and have similar looks on remote sensing images.){record delimiter}

(“relationship” {tuple_delimiter}“Apple tree” {tuple_delimiter}“The apple tree” {tuple_delimiter}”10”{tuple_delimiter}’Apple tree’ and ‘The apple tree’ represent the
same object on remote sensing images.){record_delimiter}

& J

Figure 7. Main prompts used in design of vision-centric agent.

Model ‘ Publication | airport ‘ train station ‘ windmill ‘ harbor ‘ others ‘ Average
SAN [17] CVPR 2023 1.77 4.59 1.19 5.50 20.26 6.66
CAT-SEG [3] | CVPR 2024 2.86 8.43 5.99 8.17 61.48 17.39

- 3.36 27.87 16.99 22.05 89.25 31.90
SkySense-O

- (+0.50) (+19.44) (+11.00) | (+13.88) | (+27.77) | (+14.51)

Table 3. Zero-shot remote sensing semantic segmentation performances for unseen classes on the SIOR dataset. Bold indicates the highest
performances in mloU (%).



Source Dataset Samples Num

NWPU-RESISC-45 [2] 9000
UCM-Landuse [9] 2100

RSITMD [18] 948
EarthVQA [13] 145368
RSVQA-LR [7] 47173
DOTA-v2.0 [4] 20000
FAIRIM [11] 40000
FIT-RS (subset) [8] 327955

Table 4. Data details of the samples in the instruction fine-tuning
dataset for VQA experiments.

approach substantially enhances annotation efficiency.

3. Vision-Centric Knowledge Graph Details

In this work, we observe that when using text embeddings
as prompts, it is challenging to decouple categories with
strong contextual relationships, such as car and parking lot.
In contrast, we note that these categories exhibit significant
visual differences. This observation naturally inspire us to
consider leveraging the visual features of these categories
to help decouple them, which could be an effective solu-
tion. As illustrated in the main text, to realize this insight,
we construct a visual-centric agent utilizing GPT-4V to ob-
tain the visual relevance score for each text pair in the Sky-
SA dataset. The scoring employs a meticulously designed
chain-of-thought process that assesses a series of visual fea-
tures, including appearance, color distribution, and overall
visual shape. Examples of the prompts used and details of
the constructed graphs are illustrated in Fig. 6 and Fig. 7,
which demonstrate that our constructed knowledge graph
performs relationship clustering centered on visual features,
verifying that this is a direct yet effective approach.

Why Not Use Visual Representation from Foundation
Model? We indeed experiment with directly using visual
foundation models to score visual similarity based on the
corresponding visual region features of these categories.
While this manner appears more reasonable and elegant, our
preliminary experiments indicate that the proper visual sim-
ilarity matching by existing foundation models may be lim-
ited to larger-scale regions, for dense or small objects, such
as car and parking lot, the unsuitable receptive fields and
information compression in visual embeddings may hinder
effective visual correspondence. We hope this issue can be
decently addressed in future research.

What Insight Does the Approach Inspire? Recently,
some open-world models [14, 16] employed text-to-image
diffusion models as additional agent inputs. Compared with

them, we find that using large language models (LLMs) can
also achieve accurate visual similarity scoring. The suc-
cess of this approach confirms that LLMs inherently con-
tain sufficient visual knowledge, and effective visual match-
ing could be achieved without the additional step of text-
to-image generation. This insight also resonates with the
current mainstream MLLMs alignment paradigm via align-
ing visual models to large language models. Moreover,
this phenomenon suggests that visual tokens could be com-
pressed into large language models, as in recent work [1].
We hope that this observation can inspire more alignment
designs for MLLMs.

4. Generalization Ability to Unseen Categories

In this section, to validate the generalization ability of
SkySense-O when extended to open-world models, we
compare the performance of SkySense-O with other mod-
els on unseen categories in the Sky-SA dataset (see Ta-
ble 1 2 3).

5. Experiment Implementation Details

Details of VQA Baselines. As mentioned in the main pa-
per, we employ SkySense-O in MLLM as the vision en-
coder for experimentation. We set the batch size to 256 for
both the pre-training and fine-tuning stages. For the instruc-
tion fine-tuning dataset, we select a 328k subset of FIT-RS
and collect existing public datasets as in [8]. These public
datasets include 3 scene classification datasets (NWPU [2],
UCM [9], and RSITMD [18]), 2 VQA datasets (Earth-
VQA [13], and RSVQA-LR [7]), and 2 object detection
datasets (DOTA-v2.0 [4] and FAIRIM [11]) to enrich the
instruction dataset. Using the same instruction fine-tuning
dataset, We compare the SkySense-O with CLIP-L-14 and
CLIP-H-14, the results are shown in Tab. 5, SkySense-
O demonstrates superior performance compared to both
CLIP-L and CLIP-H.

Evaluation Details of Few-Shot Baselines. We follow
the one-shot evaluation approach as in DINOv [6]. In this
approach, for a test image containing multiple categories,
we evaluate each category separately using class-specific
prompts. For example, for a test image containing cat-
egories of ’water, ’building, and ’road, we perform in-
dependent inference for each category using class-specific
prompts. Specifically, to assess the *water’ in the test im-
age, we randomly select another image containing ’water’
from the test set and use it, along with its "water’ label, as
a prompt. The model then predicts the *water’ regions in
the test image based on this prompt. This procedure is re-
peated for each category present in the image. It is impor-
tant to note that this one-shot evaluation focuses only on the
categories present in the image, which may lead to higher
performance metrics compared to zero-shot evaluation, as it



SIRI-WHU [20] | AID-VQA [15] | RSVQA-HR [7]
Visual Encoder Acc Acc Avg Acc
CLIP-L-14 70.12 91.80 74.50
CLIP-H-14 70.63 91.55 75.45
SkySense-O7(ours) 74.79 (+4.16) 94.10 (+2.30) 78.09 (+2.64)

Table 5. Comparison of SkySense-O with CLIP series in zero-shot VQA task.

does not account for categories absent from the image.
Upsampling Visual Decoder. In our upsampling visual de-
coder, we start by taking the features in the last layer of
the Swin model. Initially, the extracted feature maps have
a resolution of 24 x 24 pixels, after processing them with
the transposed convolution operation, we increase their res-
olution to 24 x 24 pixels to 384 x 384 pixels. Moreover,
we employ the visual decoder architecture similar to CAT-
SEG [3], the spatial aggregation and the class aggregation
modules are introduced for processing the rough image-text
alignment results. All hyperparameters are kept constant
across the evaluation datasets.

Text Prompt Templates. To extract text embeddings
from the text encoder, we construct sentences using class
names, for example, "A remote sensing image
of {class}". Although we do not delve into the use of
handcrafted prompts in this study, we acknowledge it as a
potential area for future research.

6. Limitations

SkySense-O specializes in leveraging textual prompts for
remote sensing interpretation tasks, an effective approach
for common RS categories. However, for less frequent
categories in Earth observation tasks, such as pig farms
and wildfires, the incorporation of visual prompts may be
a more appropriate choice. Consequently, constructing a
more comprehensive and flexible prompt encoder is an in-
triguing topic for achieving open-world remote sensing in-
terpretation.

7. More Image-Text Alignment Visualizations

In the main text, we follow MaskCLIP [5] and adopt the
image-text correlation in the representation space to eval-
uate the effectiveness of vision-language foundation mod-
els. First, we provide here the list of categories used for the
x-axis of the histogram in Fig.7(c) of the main text. This
list includes a total of 131 categories, which are as fol-
lows: {airplane, airport, baseball field, basketball court,
bridge, expressway service area, dam, golf field, harbor,
ship, football field, storage tank, tennis court, train sta-
tion, vehicle, windmill, swimming pool, impervious sur-
faces, building, low vegetation, tree, way, clearing, parking
lot, wasteland, highroad, lane, field, water, river, cropland,
plowland, lake, unpaved road, pond, expressway, fence, so-

lar panel, path, unit, ridge, brushwood, sandpit, runway,
greenhouse, footpath, parking space, courtyard, mountain
range, island, beach, orchard, roof, site, rock, graveyard,
massif, block, planting region, stadium, sand, lake wa-
ter, street lamp, seawater, train track, house, plot, con-
duit, impoundment, sewage treatment plant, shore, dune,
ditch, park, river water, seaboard, forest land, crop, color
steel house, bench, watercourse, reservoir, container, iso-
lation strip, stash, parking area, train, small courtyard,
afforestation, farm, refinery, street, gritty land, crossroad,
trail, auxiliary road, spectator seat, plastic greenhouse, ter-
raced field, airstrip, river bed, seat, bare land, rill, riffle,
nonmotorized lane, telegraph pole, misc, construction site,
separator, grandstand, hamlet, cultivated land, gravel land,
gully, oil tank, mountain road, rockily, dumping ground,
solar power plant, gazebo, a small island, equipment, in-
dustrial park, green plant, sewage treatment tank, pitcher,
canal, cloud, the helipad, seaway}. Then, in Fig. 8, we
present more image-text correlation maps to further validate
the effectiveness of SkySense-O in image-text alignment in
open-world scenes.

8. More Predictions across Different Datasets

In this section, we provide numerous results visualizations
on open-world RS interpretation across various datasets as
shown in Fig. 9 10 11. These visualizations are utilized to
provide a more comprehensive and intuitive assessment of
SkySense-O’s performance.
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