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6. Dataset

We also notice the issues as mentioned by Choi et al. [7]
about using the multi-view stereo algorithm in [11] for data
labeling. Specifically, there are labeling errors in regions
with few textures or significant focus breathing. Addition-
ally, labeling for this dataset requires the depth maps, which
makes it inconvenient to extend to other datasets. Moreover,
when reproducing the labeling process introduced by [16],
we notice that the inverse depth range [0.2m, 100m] does
not match with the focus distance range [0.102m, 3.910m)].
This will result in half of the lens positions being unable to
be labeled, since the lens positions indexed between 24 and
48 correspond to the focus distances ranging from 0.198m
to 0.102m, which are below the lower bound of the inverse
depth range. Therefore, the labeling method used in [16] is
not adopted in this paper.

In contrast, Ho et al. [17] calculate the contrast for each
region of interest (Rol), and use the lens position corre-
sponding to the patch with the highest contrast in a focal
stack as the in-focus position. This method is more con-
venient, since the contrast of any picture is easy to calcu-
late. In addition, we believe that autofocus is essentially an
image-based task rather than a depth-based one. In scenes
with multiple DoFs and a large background with pure color,
with depth-based labeling, choosing the median of depths in
the corresponding stack to calculate the ground-truth (GT)
index may result in focusing on the background instead of
the target object, leading to the final image of defocused
target objects.

Since the contrast-based methods [30, 40, 42] predict the
in-focus position by maximizing the sharpness of the im-
ages and the focal stack of images has already been captured
during the labeling stages, using the sharpness metric as the
reference for labeling is convenient and proper. Thus, in this
paper, we follow these contrast-based methods to get the la-
bel of the dataset. In particular, we adopt the six metrics,
i.e., Laplacian [40], TenenGrad [42], Gradient Magnitude
Variance [30], Census Transform [55], Normalized Cross-
Correlation [3, 13], and Normalized SAD [13] to label the
dataset. Among them, the first three are contrast-based met-
rics, usually with a higher accuracy, while the latter three
are dual-pixel-based metrics, which can further utilize the
information from dual-pixel data. We normalize every met-
ric to the range of [0, 1] with the Min-Max Normalization.
Since the contrast-based metrics demonstrate a higher ac-
curacy, we assign the weight [0.25,0.2,0.2,0.1,0.15,0.1]
to the six normalized metrics to calculate the weighted av-

erage score. The lens position with the maximum weighted
average score is then regarded as the in-focus position.

6.1. Contrast-Based Metrics

For a given focal stack {I¥}, the contrast-based ap-
proaches predict the in-focus position by searching for the
focal position that can maximize the contrast metric ¢ of
the patch I}. Here, we introduce three typical metrics of
this category. We let (x, y) denote the coordinates of an im-
age pixel, A denote the operator on the image, and Az, y]
represent the response value at the pixel (x, y).

Energy of Laplacian [40]. The input patch is convolved
with a discrete Laplace operator, followed by squaring and
summing the responses:
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Mean Gradient Magnitude [42]. The input patch is con-
volved with two Sobel filters, followed by calculating the
norm of the two responses. This approach is sometimes re-
ferred to as “TenenGrad”:
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Gradient Magnitude Variance [30]. This method calcu-
lates the variance of the gradient magnitudes in Eq. (12)
instead of the norm:

¢ = Var (\/Am[x,yP + Ay[x,yP) . (13)

6.2. Dual-Pixel-Based Metrics

Considering that the dataset consists of a series of dual-
pixel patch pairs {(L, R)}, we adopt three phase-based ap-
proaches to fully utilize the phase information. For each
focal stack {I} }, we compute a disparity score 1 for each
left-right patch pair (L, R), and identify the focal index that
maximizes this score as the in-focus index. To reduce the
effect of images’ variation in global brightness, each patch
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Figure 8. Visualization of the GT labeled by our methods and [16] (marked as "Depth mapping”). Ours are slightly sharper.

is normalized by subtracting its mean and dividing it by its

standard deviation before computation.
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Census Transform [55]. The score is calculated by sum-
ming the Hamming distance between the two census-
transformed images. We adopt the negative score value as
our final metric, ensuring that the position with the max-
imum score is the in-focus position. Let (z,y) denote
the coordinates of an image pixel, I[x, y] denote the pixel
value at the patch I, and census(I)[x, y] denote the census-
transformed value of the pixel (z,y) at the patch.
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Normalized Cross-Correlation [3, 13]. This approach
calculates the inner product of the normalized left and right
patch pairs as the score:

v=<L,R>. (16)

Normalized SAD [13]. This approach computes the sum
of absolute deviations between the normalized patch pairs.
To make the in-focus patches those with the largest devia-
tions, we take the negative score value.
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Figure 9. Inference procedure of the actor network.

7. Actor Network

To fully utilize the sequential multi-step information
of the autofocus process, we use the ordinal regression
loss [10] to pre-train the actor network, which is defined
as:
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where f is the actual in-focus position, yy is a target proba-
bility distribution to model the probability of the model pre-
dicting each focal position, 7 represents the rank of focal
position k, and 7' is a temperature parameter that controls
the sharpness of the target distribution. Since the conversion
from the absolute position label to the relative movement
label is linear, r actually represents the rank of movement
k at the current focal position in this work. Our goal is
to make the output probability distribution of the model as
close as possible to this target distribution. The inference
procedure of the actor network is shown in Fig. 9.

8. Offline Expert Trajectory

In this paper, we expect to obtain an expert trajec-
tory {g(-), GT, (s0,a0), " ,(Sn,an)}, where GT repre-
sents the in-focus position, (s, a;) represents the state-
action pair at time step ¢, and g(-) represents the transform-
ing function from the lens position k,, to the state s,, in this
trajectory, which is generated or refined by human knowl-



Algorithm 2 Expert trajectory generation 2.

Input: S = {(s9,9(-), GT)}n and n;
Output: DF;
1: DF = ;

2: for all (sp, (), GT); € Sdo
3 ko< g; ' ((50)i);

4: ag < GT; — ko;

5: S1 gz(GTz),
6
7
8
9

forall j =1,2,--- ,ndo
s; < 9i(GTy);
aj < 0;
end for
10 DEF <« DFU{g(-),GT, (s0,a0), -, (5n,an)}s;
11: end for
12: return DF.

edge. Ideally, an expert trajectory must satisfy the following

conditions:

¢ The final position k,, must be within the DoF, i.e., k,, €
k*, to promise the sharpness, where k* denotes the set of
lens positions within the DoF.

e ki <k << kporky > k> -
occurrence of focus hunting (FH).

* The lens movement distance across steps must gradually
decrease, i.e., |k;iy1 — ki| < |k; — k;—1], to avoid over-
shooting and get a smoother trajectory.

Since we mainly concentrate on the multi-step performance,

moving the lens to the in-focus position in a single step may

not be necessary. Meanwhile, if we set the trajectory to be

correctly focused in single-step and the following 2— to 4—

actions are 0 (stop), it is more likely to sample a zero ac-

tion, which is harmful for exploration in RL. Besides Algo-
rithm [ in the main text, we design the other two algorithms,

i.e., Algorithm 2 and Algorithm 3, to generate the expert

trajectories and mix these trajectories in a single dataset.

Fig. 10-Fig. 12 visualize the generation or refinement
process of Algorithm [-Algorithm 3, respectively. In Al-
gorithm 1, for a given trajectory, we use the in-focus po-
sition as the axis of symmetry and reflect all positions at
the original trajectory into the interval range between the
in-focus position and the initial position. Then, we re-sort
these positions and consider the fixed trajectory as an expert
trajectory. In Algorithm 2, for a given trajectory, we ex-
tract the initial position and in-focus position directly, and
the in-focus position is appended after the initial position
until reaching the length of the original trajectory. In Al-
gorithm 3, for a given trajectory, we also extract the ini-
tial position and in-focus position directly, and calculate the
distance d between the initial position and in-focus posi-
tion. Then, the next position is generated by dividing the
distance into m equal parts with width d/m and setting the
new position as int(d/m) apart from the GT until reaching

> k,, for no
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Figure 10. Visualization of Algorithm 1: (1) the original trajectory
given; (2) the position of the image in the red rectangle index=20 is
symmetrically mirrored from the in-focus position index=23 (GT)
to the new position index=26; and (3) resort to the positions.

Algorithm 3 Expert trajectory generation 3.

Input: S = {(s9,9(-),GT)}n, m and n;
Output: DF;

1: DF = J;

2: for all (so,g(-),GT); € Sdo
ko < g; ' ((s0)i);
4 d=ko—GTy;
5: forallj=1,2/--- ,n—1do
6: d < int(d/m);
7
8
9

(95}

kj — GTZ + d,;
sj < gi(k;);
: aj—1 < k?j_l — ]fj;
10:  end for
11: Sy gz(GTz)’
12: p—1 = kp_1— GTu ayn < 0;
13: DE «— DPU{g(),GT, (s0,a0)," , (8n,an)}is
14: end for
15: return DF.

the length of the original trajectory.

In comparison, Algorithm 1 is used to fix the trajecto-
ries in which overshooting occurs at the first step or the lens
hunting around the in-focus position, since the images cor-
responding to the lens around the in-focus position have lit-
tle difference in sharpness and stopping at these positions is
more acceptable than hunting around the in-focus position.
Algorithm 2 generates trajectories that are difficult to focus
on (e.g., no texture) since exploration cannot give more use-
ful information in these scenes. Algorithm 3 can be used to
generate any expert trajectories, which is mainly adopted in
this paper to generate expert trajectories where the images
are sharp.
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Figure 11. Visualization of Algorithm 2: (1) the origin trajectory
given; (2) keep the initial position unchanged; (3) set the in-focus
position to the next position; (4) repeat (3) until max steps; (5) get
the new trajectory.
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Figure 12. Visualization of Algorithm 3: (1) the origin trajectory
given; (2) calculate the distance between the initial and in-focus
positions, which is 25; (3) divide the distance=25 into five equal
parts with a width=>5, and set the new position to be the “width=5"
apart from the GT; (4) repeat (3) until max steps; (5) get the new

trajectory.

Table 6. Effects of expert regularization.

regularization coefficient =01 <11 <21 <41 | MAE|l RMSE|
A=1 0.029 0.050 0.082 0.153 17.213 20.826
A=1x10"3 0.336 0.711 0.839 0.915 2.146 5.827
A=1x10""7 0.023 0.067 0.111 0.191 15.444 19.027

Table 7. Effects of focus hunting penalty.

FHpenalty | steps || =01 <11 <21 <441 |MAE| RMSE| | FH]
1 033 0711 0839 0915 | 2146 5827 | NA
2 0439 0808 0896 0941 | 1755 5597 | 0.170
e=hal g 0450 0816 0900 0943 | 1711 5532 | 0.175
4 0449 0818 0901 0944 | 1694 5479 | 0.178
1 0314 0688 0823 0905 | 2448 6555 | NA
2 0420 0798 0892 0937 | 1868 5784 | 0.265
e=-051 0427 0803 0896 0940 | 1.825 5747 | 0.307
4 0428 0805 0897 0940 | 1824 5765 | 0316
1 0251 0601 0763 0863 | 3352 8083 | NA
ee 10| 2 0349 0735 0851 0907 | 2715 7712 | 0.156
3 0350 0739 0854 0907 | 2659 7567 | 0.157
4 0350 0739 0854 0907 | 2659 7567 | 0.157

9. Qualitative Results and Analysis
9.1. Additional Analysis

MAE and RMSE. Compared with the multi-step pre-
dictions obtained by Deep Learning (DL)-based methods,
the one-step prediction of the DRL-based method achieves a
lower RMSE with higher MAE. As illustrated in Fig. 6, DL-
based methods occasionally misidentify the correct in-focus
positions, whereas DRL-based methods consistently pro-
vide more accurate predictions. Consequently, DL-based
methods exhibit higher accuracy within the range of < 4,
but the incorrect predictions deviate significantly from the
in-focus positions, resulting in a lower MAE with a higher
RMSE. In contrast, despite the DRL-based methods having
a lower accuracy within the same range (< 4), their incor-
rect predictions remain closer to the in-focus positions.

9.2. Additional qualitative results

Fig. 13, Fig. 14 and Fig. 15 demonstrate more trajec-
tories of focus hunting, and we provide the corresponding
.gif files in our supplementary to visualize the focus hunt-
ing more vividly. Fig. 16 illustrates additional failure cases
of our models.

9.3. Additional ablation Study

Effects of regularization coefficient. Tab. 6 shows the
effects of the regularization coefficient A in expert trajectory
regularization. When the regularization coefficient A = 1,
the accuracy decreases significantly. This is because when
the A is too large, the effect of the expert trajectory is too
strong, and the learning process tends to be imitation learn-
ing rather than reinforcement learning. Owing to the dis-
tributional shift between the dataset and the actual test en-
vironment [32], the system’s performance significantly de-
grades. When the regularization coefficient A = 1 x 1077,
the accuracy still decreases significantly. This is because
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Figure 13. Visualization of the focus hunting phenomenon. (1) The trajectory generated by the learning-based method [7] that predicts
the lens position directly. (2) The trajectory generated by the learning-based method [7] that predicts the relative movement of lens. (3)
The trajectory generated by our DRL-based method. It can be seen that the FoV and sharpness in trajectory (1) change more significantly,
while the lens terminates at the GT after Step 3 in trajectory (2), and the lens terminates at the GT after Step 2 in trajectory (3).
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Figure 14. Visualization of the focus hunting phenomenon. (1) The trajectory generated by the learning-based method [7] that predicts the
lens position directly. (2) The trajectory generated by the learning-based method [7] that predicts the relative movement of lens. (3) The
trajectory generated by our DRL-based method. It can be seen that focus hunting can happen even in scenes with one disparity, leading to
the shaking of target objects.
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when the ) is too small, the effect of the expert trajectory is
too weak, and the learning process tends to be vanilla DRL
without expert regularization.

Effects of focus hunting penalty. Tab. 7 demonstrates
the effects of focus hunting penalty in Eq. (5). It can be
seen that when the focus hunting penalty term is small, the
suppressing effects of RL are low, leading to a higher FH
rate. When the penalty term is high, the suppressing effects
of RL are too strong, leading to no backward movement of
the lens and a low FH rate with low accuracy.
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Index=25(GT) Index=25(GT) Index=25(GT) Index=25(GT)

10. Limitations and Future Works

While showing state-of-the-art performance, our work
may be further improved in the future by addressing the fol-
lowing limitations: 1) The adopted dataset is static, so the
performance in dynamic scenes remains unknown. 2) The
design of the reward function is simple, while the human
preference in AF tasks is hard to model. More advanced
technologies, such as reinforcement learning from human
feedback (RLHF), may be further leveraged to help design
a better reward function and refine the trained model.
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Figure 15. Visualization of the focus hunting phenomenon. (1) The trajectory generated by the learning-based method [7] that predicts the
lens position directly. (2) The trajectory generated by the learning-based method [7] that predicts the relative movement of lens. (3) The

trajectory generated by our DRL-based method. Although the learning-based method [7] can predict the in-focus position, focus hunting
still occurs.
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Figure 16. Additional failure cases of our models, where only the left image of DP data is visualized.
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Figure 17. Trajectories of Fig. 13 generated by predicting the lens position [7] (red line), predicting the relative movement (purple line),
and DRL (green line). The trajectory generated by our DRL is the smoothest, indicating a stable and fast focusing procedure.
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Figure 18. Trajectories of Fig. 14 generated by predicting the lens position [7] (red line), predicting the relative movement (purple line),
and DRL (green line). The trajectory generated by our DRL is the smoothest, indicating a stable and fast focusing procedure.

— (1) predict lens position — (2) predict lens movement — (3) DRL DoF

steps“

Figure 19. Trajectories of Fig. 15 generated by predicting the lens position [7] (red line), predicting the relative movement (purple line),
and DRL (green line). The trajectory generated by our DRL is the smoothest, indicating a stable and fast focusing procedure.
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