
A. Experimental Settings
Supervised image classification. For all supervised classi-
fication experiments on ImageNet-1K, we follow the train-
ing recipes from ConvNeXt [54]. For ConvNeXt-B and
ConvNeXt-L, we use the original hyperparameters without
modification. ViT-B and ViT-L models use the same hyper-
parameters as ConvNeXt-B, except that for ViT-L, the beta
parameters for AdamW are set to (0.9, 0.95), and the depth
path rates are set to 0.1 for ViT-B and 0.4 for ViT-L.

Diffusion models. We use the official implementation [56]
for training all DiT models. We find that the default learning
rate is suboptimal for the models considered in this paper.
To address this, we conduct a simple learning rate search
with the LN models and apply the tuned learning rates di-
rectly to the DyT models. We also observe that the zero ini-
tialization negatively affects the performance of DyT mod-
els. Therefore, we retain the zero initialization for LN mod-
els but remove the zero initialization for DyT models.

Large Language Models. In our implementation of
LLaMA models [21, 79, 80] with DyT, we introduce an
additional learnable scalar parameter immediately after the
embedding layer, before any Transformer blocks. We ini-
tialize it to the square root of the model embedding dimen-
sion

→
d. Without this scaling scalar, we find that the mag-

nitudes of model activations at the beginning of training are
too small, and the training struggles to progress. The is-
sue is mitigated by incorporating a learnable scalar, and the
model can converge normally. This addition of a scalar is
similar to the original Transformer [82] design, which uses
a fixed scalar of the same value at the same position.

We train all our LLaMA models on the Pile dataset [25].
We use the codebase from FMS-FSDP [23], which provides
a default training recipe for the 7B model that closely fol-
lows the LLaMA 2 paper [80]. We maintain the learning
rate at the default 3e-4 for 7B and 13B and 1.5e-4 for 34B
and 70B, in line with LLaMA 2. The batch size is set to 4M
tokens and each model is trained on a total of 200B tokens.

For evaluation, we test the pretrained models on 15
zero-shot commonsense reasoning tasks from lm-eval

[24]: anli r1, anli r2, anli r3, arc challenge,
arc easy, boolq, hellaswag, openbookqa, piqa,
record, rte, truthfulqa mc1, truthfulqa mc2,
wic, and winogrande. The selection closely follows that
of OpenLLaMA [26]. We report the average performance
across all tasks.

Self-supervised learning in speech. For both wav2vec 2.0
models, we retain the first group normalization layer from
the original architecture, as it functions primarily as data
normalization to handle the unnormalized input data. We
use the official implementation [58] without modifying hy-
perparameters for both the Base and Large models. We re-
port the final validation loss.

Other tasks. For all other tasks, MAE [34], DINO [14],
HyenaDNA [60] and Caduceus [69], we directly use the
publicly released code [31, 46, 55, 57], without hyperpa-
rameter tuning, for both models with LN and DyT.

B. Efficiency of DyT
We benchmark the LLaMA 7B model with RMSNorm or
DyT by measuring the total time required for 100 forward
passes (inference) and 100 forward-backward passes (train-
ing) on a single sequence of 4096 tokens. We follow the of-
ficial LLaMA instructions to load the model from Hugging
Face [40]. Table 10 reports the time taken for RMSNorm
and DyT layers, as well as for the entire model, when run-
ning on an Nvidia H100 GPU with BF16 precision. This set
of measurements is taken without performance optimiza-
tions. DyT layers reduce computation time compared to
RMSNorm layers.

inference training

LLaMA 7B layer model layer model

RMSNorm 2.1s 14.1s 8.3s 42.6s
DyT 1.0s 13.0s 4.8s 39.1s

reduction → 52.4% → 7.8% → 42.2% → 8.2%

Table 10. Inference and training latency (BF16 precision) for
LLaMA 7B with RMSNorm or DyT. DyT achieves a substantial
reduction in both inference and training time. Results are mea-
sured without any performance optimizations for both layers.

We also measure the forward and backward pass la-
tency after compiling the DyT and RMSNorm layers using
torch.compile. We do not compile the entire LLaMA
model, as we find that compiling the full model increases la-
tency for this particular LLaMA implementation, and only
compiling the DyT/RMSNorm layers produces the most ef-
ficient runs. The results, shown in Table 11, indicate that
after compilation, the latency of RMSNorm and DyT layers
becomes nearly identical.

inference training

LLaMA 7B layer model layer model

RMSNorm 0.3s 12.3s 3.9s 38.9s
DyT 0.3s 12.3s 3.9s 38.9s

Table 11. Inference and training latency (BF16 precision) for a
compiled LLaMA 7B with RMSNorm or DyT. After compila-
tion, the latency of RMSNorm and DyT layers are nearly identical.

An important distinction of DyT is that it is an element-
wise operation and does not require a reduction operation
within itself, compared to normalization layers. This could
make it faster on hardware where reduction is a bottle-
neck. Additionally, even on conventional GPUs, DyT could
offer opportunities for further optimization, e.g., fusing it



with the preceding matrix multiplication layer from the last
residual block.

C. Results on Initialization of ω for LLMs

To further illustrate the impact of ω0 tuning, Figure 10
presents heatmaps of loss values at 30B tokens of two
LLaMA models. Both models benefit from higher ω0 in
attention blocks, leading to reduced training loss.

0.2 0.4 0.6 0.8 1.0
attention block ↵0

0.
05

0.
1

0.
2

0.
4

0.
6

ot
he

r↵
0

1.865 1.841 1.837 1.833 1.839

1.847 1.828 1.826 1.828 1.828

1.871 1.831 1.823 1.820 1.823

1.935 1.859 1.836 1.833 1.837

1.925 1.908 1.898 1.899 1.913

LLaMA 7B (width 4096 depth 32)

1.82

1.84

1.86

1.88

1.90

1.92

0.2 0.4 0.6 0.8 1.0
attention block ↵0

0.
05

0.
1

0.
15

0.
2

0.
25

ot
he

r↵
0

1.851 1.812 1.792 1.798 1.804

1.839 1.773 1.769 1.774 1.790

1.829 1.769 1.767 1.770 1.790

1.818 1.781 1.776 1.779 1.791

1.825 1.787 1.781 1.790 1.791

LLaMA 13B (width 5120 depth 40)

1.77

1.78

1.79

1.80

1.81

1.82

1.83

1.84

1.85

Figure 10. Heatmaps of loss values for different ω0. Both
LLaMA models benefit from increased ω0 in attention blocks.

Model width primarily determines ω0. We also investi-
gate the influence of model width and depth on the optimal
ω0. We find that the model width is critical in determining
the ω0, while model depth has minimal influence. Table 12
shows the optimal ω0 values across different widths and
depths, showing that wider networks benefit from smaller
ω0 values for optimal performance. On the other hand,
model depth has negligible impact on the choice of ω0.

As can be seen in Table 12, the wider the network, the
more uneven initialization for “attention” and “other” is
needed. We hypothesize that the sensitivity of LLM’s ω ini-
tialization is related to their excessively large widths com-
pared to other models.

width / depth 8 16 32 64

1024 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0
2048 1.0/0.5 1.0/0.5 1.0/0.5 1.0/0.5
4096 0.8/0.2 0.8/0.2 0.8/0.2 0.8/0.2
8192 0.2/0.05 0.2/0.05 0.2/0.05 0.2/0.05

Table 12. Optimal ω0 (attention / other) across model widths
and depths in LLaMA training. Model width significantly im-
pacts the choice of ω0, with wider networks requiring smaller val-
ues. In contrast, model depth has negligible influence.

D. Comparison with Other Methods

To further assess DyT’s effectiveness, we compare it with
other methods that enable training Transformers without
normalization layers. These methods can be broadly cate-
gorized into initialization-based and weight-normalization-
based methods. We consider two popular initialization-
based methods, Fixup [39, 90] and SkipInit [6, 18]. Both
methods aim to mitigate training instabilities by adjusting
the initial parameter values to prevent large gradients and
activations at the start of training, thereby enabling stable
learning without normalization layers. In contrast, weight-
normalization-based methods impose constraints on net-
work weights throughout training to maintain stable learn-
ing dynamics in the absence of normalization layers. We
include one such method, εReparam [88], which controls
the spectral norm of the weights to promote stable learning.

model LN Fixup SkipInit ωReparam DyT

ViT-B 82.3% 77.2% 74.1% 82.5% 82.8%
ViT-L 83.1% 78.1% 75.6% 83.0% 83.6%

MAE ViT-B 83.2% 73.7% 73.1% 83.2% 83.7%
MAE ViT-L 85.5% 74.1% 74.0% 85.4% 85.8%

Table 13. Classification accuracy on ImageNet-1K. DyT consis-
tently achieves superior performance over other methods.

Table 13 summarizes the results of two ViT-based tasks.
We closely follow the original protocols outlined in their
respective papers. However, we find that both initialization-
based methods, Fixup and SkipInit, require much lower
learning rates to prevent divergence. To ensure a fair com-
parison, we conduct a learning rate search for all methods,
including DyT. This produces results that differ from those
reported in Section 5, where no hyperparameter is tuned.
Overall, the results show that DyT consistently outperforms
all other tested methods across different configurations.

E. Replacing Batch Normalization with DyT
We investigate the potential of replacing BN with DyT in
classic ConvNets such as ResNet-50 [33] and VGG19 [71].
Both models are trained on the ImageNet-1K dataset [19]
using the training recipes provided by torchvision. The



model LN (original) DyT (original) LN (tuned) DyT (tuned)

ViT-B 82.3% (4e-3) 82.5% (4e-3) - 82.8% (6e-3)
ViT-L 83.1% (4e-3) 83.6% (4e-3) - -
ConvNeXt-B 83.7% (4e-3) 83.7% (4e-3) - -
ConvNeXt-L 84.3% (4e-3) 84.4% (4e-3) - -

MAE ViT-B 83.2% (2.4e-3) 83.2% (2.4e-3) - 83.7% (3.2e-3)
MAE ViT-L 85.5% (2.4e-3) 85.4% (2.4e-3) - 85.8% (3.2e-3)
DINO ViT-B (patch size 16) 83.2% (7.5e-4) 83.4% (7.5e-4) 83.3% (1e-3) -
DINO ViT-B (patch size 8) 84.1% (5e-4) 84.5% (5e-4) - -

DiT-B 64.9 (4e-4) 63.9 (4e-4) - -
DiT-L 45.9 (4e-4) 45.7 (4e-4) - -
DiT-XL 19.9 (4e-4) 20.8 (4e-4) - -

wav2vec 2.0 Base 1.95 (5e-4) 1.95 (5e-4) - 1.94 (6e-4)
wav2vec 2.0 Large 1.92 (3e-4) 1.91 (3e-4) - -

HyenaDNA 85.2% (6e-4) 85.2% (6e-4) - -
Caduceus 86.9% (8e-3) 86.9% (8e-3) - -

Table 14. Performance comparison between original and tuned learning rates for LN and DyT models. Results show that tuning
learning rates provide only modest performance improvements for DyT models, suggesting that the default hyperparameters optimized for
LN models are already well-suited for DyT models. Entries marked with “-” indicate no performance gain over the original learning rate.
The values in parentheses represent the learning rate used.

Model LN DyT (ε0 = 0.5) DyT (tuned)

ViT-B 82.3% 82.5% 82.6% (ω0 = 1.0)
ViT-L 83.1% 83.6% -
ConvNeXt-B 83.7% 83.7% -
ConvNeXt-L 84.3% 84.4% -

MAE ViT-B 83.2% 83.2% 83.4% (ω0 = 1.0)
MAE ViT-L 85.5% 85.4% -
DINO ViT-B (patch 16) 83.2% 83.4% -
DINO ViT-B (patch 8) 84.1% 84.5% -

DiT-B 64.9 63.9 -
DiT-L 45.9 45.7 -
DiT-XL 19.9 20.8 -

wav2vec 2.0 Base 1.95 1.95 -
wav2vec 2.0 Large 1.92 1.91 1.90 (ω0 = 1.0)

HyenaDNA 85.2% 85.2% -
Caduceus 86.9% 86.9% -

Table 15. Impact of tuning the ω0 in DyT models. Optimizing ω0 from the default value (ω0 = 0.5) yields only minor performance gains
for select DyT models, implying the default initialization already achieves near-optimal performance. Entries marked with “-” indicate no
improvement over the default ω0.
DyT models are trained using the same hyperparameters as
their BN counterparts.

model BN DyT

ResNet-50 76.2% 68.9%
VGG19 72.7% 71.0%

Table 16. ImageNet-1K classification accuracy with BN and
DyT. Replacing BN with DyT in ResNet-50 and VGG19 results
in a performance drop, indicating that DyT cannot fully substitute
BN in these architectures.

The results are summarized in Table 16. Replacing BN
with DyT led to a noticeable drop in classification accuracy
for both models. These findings indicate that DyT is strug-
gling to fully replace BN in these classic ConvNets. We
hypothesize this could be related to BN layers being more
frequent in these ConvNets, where they appear once with
every weight layer, but LN only appears once per several
weight layers in Transformers.

F. Hyperparameters
We present additional experiments to evaluate the impact of
hyperparameter tuning, specifically focusing on the learn-
ing rate and initialization of ω for all non-LLM models.
Tuning learning rate. Table 14 summarizes performance
comparisons between models trained with original versus
tuned learning rates. Results indicate that tuning the learn-
ing rate provides only modest performance improvements
for DyT models. This suggests that the original hyperpa-
rameters, initially optimized for LN models, are already
well-suited for DyT models. This observation underscores
the inherent similarity between the DyT and LN models.
Tuning initial value of ω. We also investigate the effects
of optimizing ω0 for DyT models, as presented in Table 15.
Findings show minor performance enhancements for select
models when ω0 is tuned, indicating that the default value
(ω0 = 0.5) generally achieves near-optimal performance.


