Argus: A Compact and Versatile Foundation Model for Vision

Supplementary Material

A. Implementation Details

In this section, we provide detailed information about the
adapter, the implementation of MTL library, the MTL al-
gorithms compared in the main manuscript, and additional
experiment setup.

A.1. Details on Adapter Components

As illustrated in Fig. 4, the adapter comprises several mod-
ules: a spatial prior module for spatial feature extraction,
injector and extractor modules for interacting features with
the ViT blocks, and a projection module for final feature ag-
gregation and normalization. Below, we provide a detailed
description of each module.

Spatial Prior Module. The spatial prior module (SPM)
begins with a stem inspired by ResNet [26], consisting of
three convolutional layers and a max-pooling layer. The
output of the stem is followed by three 3 x 3 and 1 x 1
convolutional layers. These layers generate spatial features,
{F1, Fa, Fs}, at resolutions of &, 7=, and 35, respectively.
These spatial features are then flattened and concatenated
to form spatial feature tokens Fs,. These tokens are sub-
sequently used as input to the A interaction blocks of the
injector and extractor modules. To mitigate the negative
transfer issue in multitask learning, we replace all the batch
normalizations layers in this module with group normaliza-
tions layers.

Injector and Extractor. Each interaction block consists
of an injector and an extractor, interacting with ViT blocks.
For the i-th interaction block, we scale the ViT tokens F7 ,
and use them as the query for a cross-attention layer, while
the spatial feature tokens F, jp-either from the SPM or the
prior extractor output-serve as the key and value. The injec-
tor performs an element-wise addition with the ViT features
and then descales the cross-attention outputs, producing up-
dated ViT features that are passed as input to the ViT blocks.
After the ViT blocks, the extractor takes the scaled ViT fea-
tures from these ViT blocks as key and value for another
cross-attention layer, where the spatial feature tokens from
the SPM (or the prior extractor output) acts as the query.
The cross-attention layer output is then processed by a feed-
forward network (FFN) to generate updated spatial feature
tokens for the next interaction block. This iterative process
enables the interactions between spatial and ViT tokens.

Projection Module. The projection module processes the
final output of the backbone to generate features for de-

coders. It begins by performing element-wise addition of
the final ViT features .F{)\ift with four feature maps, followed
by group normalization layers. These feature maps con-
sist of Fy (directly from the SPM) and {FN, F)V, F{V}
(unflattened from spatial feature tokens fé}f from the last
interaction block). Group normalization ensures that each
feature map is suitably normalized for the task-specific de-
coders, enhancing the adapter’s capability across diverse vi-
sion tasks. These multiscale features {Fo, F{V, F3¥', F'}

are then passed to the decoders.

A.2. Implementation Details of MTL Library

We developed a new modular and extensible multitask
learning (MTL) package to facilitate the experiments in
this paper. The library is designed to support training
across various computer vision tasks, covered by our vi-
sion foundation model (VFM) Argus. For each spe-
cific task, the package integrates a corresponding task-
specific library responsible for dataset loading, model con-
struction, and task evaluation. Specifically, we utilized
the following integrations: mmdetection’ for detec-
tion, instance segmentation, and panoptic segmentation;
mmsegmentat ion’ for depth estimation, surface normal,
boundary deteciton, semantic segmentation, human parsing,
and saliency detection; mmpose* for pose estimation; and
mmclassification’ for classification.

This modular architecture allows for seamless integra-
tion of additional task-specific libraries, enabling the pack-
age to support new tasks with minimal effort. Users can ei-
ther incorporate new task-specific modules or leverage the
existing integrations.

To improve the training efficiency, we implemented the
automatic mixed precision (AMP). This optimization re-
duces memory consumption and accelerates training. These
efforts enable efficient training of the five core tasks in MTL
using simple distributed data parallel (DDP) without requir-
ing more complex techniques such as model parallelism or
gradient checkpointing.

The package also supports multiple MTL algorithms, in-
cluding FAMO [42] and GradNorm [11].

A.3. Implementation Details of MTL Algorithms

We introduce our MTL formulation in Section 3. For
the weighting factor A\; in Equation 1, we set it heuris-
tically based on training loss scales in multitask learn-

2https://github.com/open-mmlab/mmdetection
3h:zps://qithu>.com/openfffiab/mmseqmentation
4https://github.com/open-mmlab/mmpose
Shttps://qithub.com/openfffiab/mmclasSification
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ing. For example, if the loss for pose/seg/cls/det is around
0.001/0.25/3/50 in the middle of training (set Ay = 1 as the
default), then we set A\yo5c = 1000, Ageg = 3, Acis = 1, and
Adet = 0.1 to scale the task losses roughly to the same range
of [0.5,5].

We also provide the detailed configurations of the other
MTL algorithms compared in the ablation study in Sec. 4.3
below.

FAMO. The Fast Adaptive Multitask Optimization
(FAMO) [42] is a loss balancing MTL algorithm that is des-
gined based on the principle that at each step, all task losses
should decrease at the same rate. We implemented FAMO
in our MTL framework based on their official codebase’.
We follow the default configurations in their codebase. The
learning rate for the Adam optimizer of weighting parame-
ter is 0.025, and the weight decay is 0.001. The task weights
are normalized to have the sum equal to the number of tasks.

GradNorm. The GradNorm algorithm [11] balances the
gradients of different tasks based on the principle that the
gradient from different tasks should share a common scale.
Since computing the exact gradient w.r.t. the shared param-
eters is computationally expensive, we approximate the gra-
dient norm by the norm of the gradient of the feature maps.
In our multi-input case, different tasks have different in-
put images with different batch sizes and different resolu-
tions and therefore have different feature maps. In order to
counter these differences, we first compute the norm of the
gradient of the feature maps, and then average them over
batch size and spatial resolution.

A.4. Details on Experiment Setup

By default, we use the AdamW [48] optimizer with a learn-
ing rate of 0.0002, a weight decay 0.05, and a Cosine An-
nealing learning rate scheduler [49]. We use batch size
of 16 for object detection, instance segmentation, panoptic
segmentation, semantic segmentation on ADE20K dataset,
depth estimation, surface normal, and object boundary de-
tection. For saliency detection, human parsing, and seman-
tic segmentation on the NYUv2 dataset, a batch size of 32
is used. Additionally, we use a batch size of 128 for pose
estimation on the COCO dataset and 256 for classification
on the ImageNet dataset.

For the another 5 tasks selected for ablation in Sec. 4.3,
they are instance segmentation on ADE20K, depth estima-
tion and boundary detection on NYUv2, and surface normal
and human parsing on PASCAL-context.

6ht tps://github.com/Cranial-XIX/FAMO

B. Details on Supported Tasks

Object Detection. Object detection involves identifying
and localizing objects within an image by predicting their
bounding boxes and class labels. Instance segmentation is
often trained together using the same detector such as Mask
R-CNN [27] or Mask DINO [35] to extends this task by
providing pixel-level segmentation masks for each detected
object. We train object detection and instance segmentation
together using Mask DINO [35] on COCO dataset. Mask
DINO is an advanced architecture designed for end-to-end
object detection and segmentation. It jointly optimizes the
detection head and segmentation head through shared rep-
resentations, enabling the simultaneous learning of bound-
ing boxes, class labels, and segmentation masks. We fol-
low the standard configurations and loss functions provided
by Mask DINO. The object detection head predicts bound-
ing boxes and class scores, while the instance segmentation
head generates pixel-level masks.

Pose Estimation. Pose estimation aims to detect and pre-
dict the positions of keypoints of objects (e.g. human body,
face, animal) within an image. We adopt the top-down key-
point heatmap approach, which has been shown to achieve
superior performance in human body pose estimation [77].
Given the bounding box of each individual human body
(which can be reliably obtained by Argus’s object detec-
tion decoder), the top-down model transforms the keypoint
detection into a heatmap estimation problem. We use Dense
Prediction Transformer (DPT) [59] head with regression
loss of keypoints to train this task.

Classification. Image classification involves assigning a
label to an entire image based on its content. We apply an
attentional pooler [83] to the multiscale spatial tokens from
our image encoder to produce a single holistic representa-
tion of images. We then feed this token to a linear projec-
tion layer followed by a Softmax activation to form the clas-
sification decoder, which is trained using the conventional
cross-entropy loss by the manual class labels.

Semantic Segmentation, Saliency Detection, Human
Parsing, and Object Boundary Detection. These four
tasks involve detailed image analysis and segmentation. Se-
mantic segmentation classifies each pixel in an image into
a predefined category, providing a granular understanding
of the scene. Human parsing focuses on identifying and
labeling various body parts within an image, allowing for
precise body part recognition. Saliency detection aims to
highlight the most visually prominent areas of an image,
directing attention to key regions. Object boundary detec-
tion involves identifying and outlining the boundaries of ob-
jects, delineating their shapes and contours. For these tasks,
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Table 10. Evaluation results on Single Task, multi-task adaptation,
and comparisons with existing models.

Methods COCO ImageNet ADE20K
AP, AP,, AP,  Top-1 mloU
Single Task 56.7 504 76.4 86.2 55.4
Multi-task (Ours) 58.6 51.8 77.0 86.3 56.5
Adaptation (Ours) 58.8 52.0 77.1 86.3 56.7

we employ UPerNet [76], a powerful decoder known for
generating high-resolution segmentation masks. Except for
saliency detection, the UPerNet decoder is supplemented by
an auxiliary Fully Convolution Network [47], which is only
used during training. We use pixel-wise cross-entropy loss
as the training objective for all these tasks.

Instance and Panoptic Segmentation. These two tasks
involve identifying and segmenting individual objects
and their boundaries within an image. We use
Mask2Former [13] as the decoder for both tasks. For
Mask2Former, we adopt the original pipeline, where low-
resolution features from the VFM backbone are upsampled
and decoded by a pixel and transformer decoder, respec-
tively. Besides, we use a combination of binary cross-
entropy (BCE) loss and dice loss as the mask losses, to-
gether with classification loss for training.

Depth and Surface Normal Estimation. The goal of
these tasks is to predict the depth and orientation of sur-
faces in an image. For both tasks, we use a Dense Prediction
Transformer (DPT) [59] as the decoder. For depth estima-
tion, we use the pixel-wise scale-invariant depth loss from
AdaBins [3] together with the multiscale gradient-matching
loss from MegaDepth [37]. The DPT decoder with a sim-
ple L2 loss is used to train our surface normal prediction
model, as done by other relevant works [79, 87]. The out-
put surface normal vectors are consistently normalized w.r.t.
the L2-norm.

Anomaly Detection. We adopt SimpleNet [46] as our
anomaly detection decoder. In SimpleNet, a feature adapter
that preprocesses features from selected layers of the back-
bone to obtain normal representations. During training, an
anomalous feature generator simulates anomaly features by
sampling random Gaussian noise and adding it to the nor-
mal features. These normal and simulated anomalous fea-
tures are then processed by a discriminator, which serves as
a normality scorer to evaluate the normality of each pixel
location. During testing, the anomalous feature generator
is discarded, and the feature adapter and discriminator are
employed to perform anomaly detection inference.

C. Dataset Statistics

Tab. 11 summarizes the datasets used in Argus.

D. More Ablation Studies
D.1. Fairness of Comparison

In Tab. |1 and Tab. 2, we compare Argus with existing
works. Existing foundation models lack standardization in
training datasets and tasks during pre-training. Argus uses
less than 1.8M images for training (stages 1 & 2), simi-
lar to MAE and GLID, while other models require signif-
icantly larger datasets (e.g., 4M uses 12M images, Florence
uses 100M image-text pairs, and Florence-2 uses 126M im-
ages). Despite our smaller model size and training data,
Argus achieves compelling performance across 12 vision
tasks. Most comparisons are based on seen datasets, except
Florence-2-B, for which we report performance on both
unseen and seen datasets, denoted as ‘Florence-2-B’ and
‘Florence-2-B (fine-tuned)’, respectively.

Additionally, we mark the models using unified decoders
in Tab. | and Tab. 2. Different methods inherently use dif-
ferent decoders, and prior works like BEiT-3 [72] and In-
ternlmage [73] also compare models with varying decoders.
All the decoders of DINOV2 are the same as Argus. Further-
more, we also provide performance of Argus with differ-
ent object detection decoders in Tab. 6, including Mask R-
CNN, Mask DINO, and CO-DETER for references. Argus
outperforms MAE with the same Mask R-CNN decoder.

D.2. Single Task and Core Task Adaptation

Tab. 10 compares Argus with multi-task learning (MTL)
and training each task separately (Single Task) with the
adapter and decoder. Argus with MTL outperforms single
task on all these datasets. Besides, task-specific adaptation
is only applied to the other 7 tasks, as multitask pre-training
already produces strong performance on the 5 core tasks
by directly training their decoders. As shown in Tab. 10,
further adaptation on these 5 tasks only results in marginal
improvements.

D.3. Compare with More Models

We compare Argus with multitask learning methods and
several models specialized on the 7 tasks that are less cov-
ered in foundation models, extending the comparison pre-
sented Tab. 2. In Tab. 12, we compare Argus with mul-
titask models such as TaskExpert [81] and InvPT [79], as
well as specialized models, including ViTPose [77] for pose
estimation and DRAEM [86] for anomaly detection. Re-
markably, Argus not only supports all these tasks but also
consistently outperforms these models.



Multitask  Task-Specific . Size .
Dataset Task Pretraining = Adaptation Evaluation (Train / Test) Metric
COCO Object Yes No Yes 117266 / 4952 mAP
Detection
Instance Yes No Yes 117266 / 4952 mAP
Segmentation
Pose Yes No Yes 149813/ 6352 AP, AR
Estimation
ImageNet-1K Classification Yes No Yes 1281167/50000 Top-1 Acc
ADE20K Semantic Yes No Yes 20210/ 2000 mloU
Segmentation
Instance No Yes Yes 13385/ 1353 mAP
Segmentation
Panoptic No Yes Yes 17277 /1743 PQ
Segmentation
NYUv2 Depth No Yes Yes 24231 /654 RMSE
Estimation
Object Boundary No Yes Yes 795/ 654 odsF
Detection
Surface Normal No Yes Yes 795/ 654 mErr
Estimation
PASCAL-Context Human No Yes Yes 1736 /1853 mloU
Parsing
Saliency No Yes Yes 6352 /5105 maxF
Detection
MVTecAD Anomaly No Yes Yes 213 /100 I-AUROC
Transistor Detection
MVTecAD Anomaly No Yes Yes 220/115 [-AUROC
Metal Nut Detection
MVTecAD Anomaly No Yes Yes 320/160 I-AUROC
Screw Detection
MVTecAD Anomaly No Yes Yes 245/124 I-AUROC
Leather Detection
Person Camera Object No No Yes -/430 AP
Security Detection
Pascal VOC Object No No Yes -/1789 AP
2012 Person Detection
Detecting Cars Object No No Yes -/116 AP
Detection

Table 11. Summary of the datasets used for Argus.



Pose Depth Boundary | Surface Human Saliency Anomaly
Method # Estimation Estimation | Detection | Normal Parsing Detection Detection
ethods
Params COCO NYUv2 NYUv2 | NYUv2 | PASCAL-C | PASCAL-C | MVTecAD-4
AP, 1 ART | RMSE] odsF 1 mErr | mloU 1 maxF 1 I-AUROC 1
DRAEM [86] 69OM - - - - - - - 96.4
ViTPose (ViT-B) [77] 86M 75.8 81.1 - - - - - -
TaskExpert [81] (VIT-B) | 347M - - - - - 67.4 85.0 -
InvPT [79] 176M - - 0.598 76.1 20.5 62.7 84.2 -
Argus 100M 770 818 0.290 76.7 18.6 77.8 97.2 99.3

Table 12. Performance comparison of Argus with multitask models and specialized models over 7 vision tasks less covered in foundation
models on COCO [40], NYUv2 [33], PASCAL-C [55] and MVTecAD-4 [2] datasets.

D.4. Generalization on the Unseen Datasets

Object Detection. To demonstrate the generalizability of
Argus, we compare the performance of Argus with 4M
[53] and Florence-2 [75] on unseen data in Tab. 8. Here we
provide sources of the datasets: Pascal VOC 2012 Person 7
Person Camera Security ® and Detecting Cars ° datasets
from Roboflow Universe.

Image Classification. We adapt Argus to 11 fine-
grained object recognition benchmark datasets [33] to in-
vestigate the generalizability of our learned feature repre-
sentations to unseen data. In Tab. 14, we take DINOv2
with the default linear head as a baseline [57], and provide
a new result using the same classification decoder as ours,
denoted as DINOv2*, for a fair comparison. The perfor-
mance superiority of DINOv2* over DINOv2 indicates the
effectiveness of the classification decoder of our Argus.
Besides, Argus yields better performances than DINOv2*
across most datasets, demonstrating its generalization capa-
bility to unseen data.

D.5. Validation Performance Curves

In this section, we provide the validation performance
curves of various experiment settings.

Freeze ViT vs. Training All Paramters. In Fig. 5, we
show the validation performances of freezing ViT vs. with-
out freezing ViT (i.e. training all parameters) in multitask
pretraining of 5 tasks. We observe that freezing ViT con-
verges much faster and achieve higher performance in the
end of training. Training all parameters have significantly
lower performance in the object detection, instance seg-
mentation, semantic segmentation, and classification tasks.

Thttps://public.roboflow.com/object-detection/
pascal-voc-2012/1
8https://universe . roboflow . com/chinh/person_

camera_securityl/dataset/21

Shttps : / / universe . roboflow . com/ cars — ugebl /

detecting-cars-9jzgm/dataset/5

Only the pose estimation performance is comparable to the
freeze setting.

BN vs. GN. In Fig. 6, we show the validation perfor-
mances of BN vs. GN in multitask pretraining of 5 tasks.
We observe that GN consistently outperforms BN in all
tasks. Compared with the default configuration with BN
(SyncBN in the distributed training case), using GN can
mitigate the negative transfer in the MTL stage.

Overfitting in 11 MTL tasks We plot both the training
loss and the validation performance of multitask pretraining
of 11 tasks in Figs. 7 and 8. We observe that for tasks with
small quantity of training data, the model tends to overfit,
which is reflected by the performance drop in the validation
set and the continuous decrease of the training loss.

E. Qualitative Study
E.1. Image Classification

Since the top 2 competitors, Florence [85] and Uni-
perceiver v2 [36] in Tab. 1, are not open-source on the Im-
ageNet classification benchmark dataset. For qualitative
evaluation, we compare Argus with the next best com-
petitor, DINOv2'" [57]. Specifically, we visualize different
model’s spatial attention corresponding to their predicted
classes for object recognition by GradCAM [62]. As shown
in Fig. 9, Argus performs well at identifying salient ob-
jects in images and categorizing them accurately in some
challenging cases where DINOv2 might lose its focus po-
tentially due to noisy backgrounds, poor illumination con-
ditions and etc.

E.2. Object detection

Similar to the image classification case, since the top 2 com-
petitors, Florence and Uni-perceiver v2 in Tab. 1, are not
open-source, we compare the qualitative results of Argus

10DINOV2’s classification head is from their official GitHub repository
https://github.com/facebookresearch/dinov2.
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MTL Tasks COCO ImageNet ADE20K NYUv2 PASCAL-Context
AP, AP, AP, Top-1 mloU AP PQ | RMSE| odsF mloU | mErr] mloU maxF
5 Tasks 577 511 752 85.1 556 379 454 | 0314 7581 6483 | 1920 7779 9697
8 Tasks 573 509 748 84.8 56.6 342 449 | 0362 7582 6431 | 1906 77.48 96.88
11 Tasks 576 50.9 748 84.9 56.3 330 430 | 0363 7502 6148 | 19.13 77.88 96.05
Another 5 Tasks | 549 489 73.0 | 829 | 548 336 452 | 0348 7490 6391 | 1881 7774 96.97

Table 13. Multitask pretraining on more tasks and an alternative set of 5 tasks. Tasks marked in blue means these tasks are not considered
in MTL pretraining (stage 1 in Fig. 3) and only covered in the task-specific adaptation (stage 2 in Fig. 3).

Stanford

FGVC

Oxford

Dataset Food101 CIFARIO CIFARI00 SUN397 . VOC2007 DTD Caltech101  Flowers102
Cars Aircraft Pets
Mean Mean Mean Mean Average T
Metric Acc T Acc 1 Acc T Acc T Acc 1 Per-Class mAP 1 Acct Per-Class  Per-Class Per-Class
Acc T Acc T Acc 1 Acc T
DINOV2 [57] 92.8 98.7 91.3 71.3 88.2 79.4 88.2 83.3 96.2 96.1 99.6 90.1
DINOv2* 93.9 97.3 86.3 78.8 94.0 84.0 95.0 84.5 95.6 96.4 99.7 914
Argus 93.7 97.6 86.7 80.4 93.9 83.6 95.8 84.7 96.4 97.2 99.7 91.8

Table 14. Comparison of classification performance on unseen datasets. We adapt to 11 fine-grained object recognition benchmark
datasets [33]. We take the ViT-B/14 variant of DINOv2 with the linear head as the baseline. For a fair comparison, we build an additional
baseline by replacing the linear head of DINOv2 with the classification decoder of our Argus, and denote it as DINOv2*.

with Florence-2 and 4M. We used their open-source pre-
trained models ' to run object detection on COCO test im-
ages and visualize the results in Fig. 10. Argus demon-
strates superior object detection performance compared to
Florence-2 and 4M, particularly in challenging scenarios
involving small objects or scenes with low-lighting condi-
tions.

E.3. Pose Estimation

We compare the qualitative result of Argus with the ViT-
Pose [77] as GLID [43] is not open-sourced. We used the
open-source pretrained models '? to run pose estimation
on COCO test images and visualize the results in Fig. 11.
Argus has more accurate elbow and hip joint estimation
compared to ViT-Pose, which demonstrates Argus’s strong
performance in pose estimation.

E.4. Anomaly detection

We compare Argus with the DRAEM [86]. We used the
open-source pretrained models '* to run anomaly detec-
tion on MVTecAD test images and visualize the results in
Fig. 12. Argus has less noise in the predicted anomalous
region compared to DRAEM, which is critical in detecting

"'The models are downloaded from their official Hugging Face reposi-
tories: https:/ 2
base, https://huggingface.co/EPFL-VILAB/4M-21_B.

12The models are downloaded from their official GitHub repositories:
https://github.com/ViTAE-Transformer/ViTPose

13The models are downloaded from their official GitHub repositories:
https://github.com/Vit janZ/DRAEM

/huggingface.co/microsoft/Florence

anomalies. This demonstrates Argus’s superior anomaly
detection performance.

E.5. Depth Estimation

We compare Argus with DINOv2 [57] and InvPT [79]. We
used the open-source pretrained models '* to run depth es-
timation on NYUv2 [65] test images and visualize the re-
sults in Fig. 13. Argus outperforms both DINOv2 and
InvPT in fine-grained details and prediction sharpness for
depth prediction tasks, offering substantial advantages in
producing more accurate and high-resolution depth maps.
Unlike DINOV2, which sometimes struggles with captur-
ing intricate textures in complex scenes, Argus excels in
discerning minute variations in object surfaces and spatial
transitions, leading to a significantly enhanced level of de-
tail. Additionally, while InvPT has made strides in depth
prediction, Argus’s architecture is optimized to prioritize
depth precision, minimizing blurriness and artifacts in the
output. This makes Argus particularly suited, as it cap-
tures nuanced depth gradients that competing models tend
to overlook. Consequently, Argus not only delivers more
visually pleasing results but also enhances performance in
tasks that rely heavily on depth accuracy and fine-grained
spatial awareness.

14The models are downloaded from their official GitHub repositories:
https://github.com/zqyl/InvPT/, https:
com/facebookresearch/dinov2

//github.
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E.6. Object Boundary Detection

We compare Argus with InvPT [79]. We used the open-
source pretrained models '° to run object boundary detec-
tion on NYUv2 [65] test images and visualize the results in
Fig. 14. Argus significantly outperforms InvPT, produc-
ing more accurate predictions for the object boundary de-
tection task. Its results demonstrate higher odsF (as shown
in Tab. 2) in identifying object edges, achieving clearer and
more reliable boundary delineation. Argus consistently
surpasses InvPT in odsF metric, making it the preferred
choice for tasks requiring detailed and precise object bound-
ary detection.

E.7. Human Parsing

Fig. 18 illustrates a qualitative comparison between Argus
and DINOv2 [57] on the human parsing task, using the
PASCAL-Context dataset [55]. The figure illustrates that
Argus produces more accurate and detailed segmentation
masks, particularly in complex and challenging scenarios.
For example, in cases where multiple objects or body parts
are closely positioned or occluded, Argus successfully de-
lineates finer details and preserves the boundaries, whereas
DINOV2 often struggles with misclassification or merging
adjacent regions.

E.8. Saliency Detection

Fig. 19 showcases the qualitative comparison between
Argus and DINOv2 [57] on the salient object detection
task using the PASCAL-Context dataset. The figure demon-
strates that Argus consistently generates more precise and
accurate saliency maps, effectively highlighting the most
prominent objects in the scene. In contrast, DINOv2 fre-
quently produces less defined or overly diffuse saliency
maps, sometimes failing to distinguish the primary objects
from the background or adjacent elements.

E.9. Instance Segmentation

We provide a qualitative comparison of Argus with the
baseline DINOv2 [57] model in Fig. 15 for the instance
segmentation task. We use images from the test set of the
COCO dataset [40] for this comparison. As Argus out-
performs the baseline model in quantitative performance
(AP,,) in Tab. 1, we also observe a noticeable improvement
in the quality of generated masks and the model’s confi-
dence in object classification. In comparison to DINOv2,
we find that Argus achieves better success in recognizing
small objects and generates segmentation maps that closely
align with the ground truth.

15The models are downloaded from their official GitHub repositories:
https://github.com/zqyl/InvPT/

E.10. Panoptic Segmentation

For panoptic segmentation task, we provide qualitative
comparison of Argus with the baseline DINOv2 [57]
model in Fig. 16. We use validation images from the
ADE20K dataset in this experiment. Similar to the instance
segmentation task, we find that Argus not only outper-
forms the baseline model in quantitative performance (PQ)
but also achieves better qualitative results, e.g., often iden-
tifying objects that the baseline model completely failed to
recognize in its panoptic segmentation maps.

E.11. Semantic Segmentation

We provide a qualitative comparison of Argus with the
baseline DINOv2 [57] model in Fig. 17 for the seman-
tic segmentation task. Similar to panoptic segmentation,
we use validation images from the ADE20K dataset for
this comparison. In conjunction with a significantly better
quantitative performance (mloU), we observe that Argus
achieves significantly better qualitative results than the
baseline, e.g., generating more accurate segmentation maps
in crowded scenes.

E.12. Surface Normal Estimation

As shown in Fig. 20, Argus demonstrates a clear advan-
tage over DINOv2 [57] in the surface normal prediction
task using the NYUv2 dataset, particularly in handling com-
plex scenes with intricate structures. The surface normal
maps generated by Argus are not only more accurate but
also capture fine details with remarkable precision, preserv-
ing the subtle variations in surface orientation across ob-
jects. These finer details are especially evident in environ-
ments with detailed architectural features or cluttered set-
tings, where Argus excels at accurately mapping surface
orientations. On the other hand, DINOv2’s predictions tend
to lose clarity in scenes with high geometric complexity,
producing surface normal maps that are less precise and of-
ten fail to distinguish finer structural elements.
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Figure 5. The validation performance of freezing ViT (the purple curve) vs. without freezing ViT (i.e. training all parameters, the

curve) in multitask pretraining of 5 tasks.Freezing ViT converges much faster and achieves higher performance in the end of training.
The tasks are annotated with labels: object detection (det/bbox_mAP), instance segmentation (det/segm_mAP), semantic segmentation
(sem/mloU), classification (cls/accuracy_top-1), pose estimation (pose/AP, pose/AR).
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Figure 6. The validation performance of BN (the gray curve) vs. GN (the purple curve) in the 5-task MTL training. GN consistently
outperforms BN in all tasks. The tasks are annotated with labels: object detection (det/bbox_mAP), instance segmentation (det/segm_mAP),
semantic segmentation (sem/mloU), classification (cls/accuracy_top-1), pose estimation (pose/AP, pose/AR).
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Figure 7. Validation performances of multitask pretraining of 11 tasks. We observe that the validation performance decreases in the
later stage of the training for several tasks, including depth estimation (depth/rmse), object boundary detection (nyu_edge/mFscore), hu-
man parsing (human/mloU), semantic segmentation on NYUv2 (nyu_seg/mloU), surface normal (normal/mErr), and saliency detection
(saliency/maxF). As illustrated in Fig. 8, where the training losses for all tasks continue to decrease, it suggests that the model may be
overfitting on these tasks.
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Figure 8. Training losses of multitask pretraining of 11 tasks. We observe that the training loss for all tasks continuously decrease
throughout training. However, as shown in Fig. 7, the validation performance for several tasks decline in the later stages of training. These
results indicate that the model may be overfitting on these tasks.
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Figure 9. Qualitative comparison between Argus and DINOv2 [57] on ImageNet dataset [61]. We visualize the image regions that different
models focused on when making class predictions using GradCAM [62]. The manual class labels and the corresponding predictions from
Argus and DINOvV2 are provided on top of each image. Argus can perform well in some challenging cases where DINOV?2 is distracted
by noisy backgrounds, poor illumination conditions and etc.



(a) Ground truth (b) Argus (c) Florence-2 (d) 4aM

Figure 10. Qualitative comparisons of Argus against Florence-2 [75] and 4M [53] on object detection. We visualize the results of
these methods on COCO [40] test images. Argus demonstrates superior object detection performance compared to Florence-2 and 4M,
particularly in challenging scenarios involving small objects or scenes with low-lighting conditions.



Groundtruth: ArguS:  e—— ViT-Pose:

Figure 11. Qualitative comparisons between Argus and ViT-Pose [77]. We visualize the results of these methods on COCO test images.
Argus demonstrates strong pose estimation performance compared to ViT-Pose. The bottom figure shows that Argus predicts keypoints
that match better with the ground-truth, especially on the hip and elbow joints.



(a) Input image (b) Ground truth (d) DRAEM

Figure 12. Qualitative comparisons between Argus and DRAEM [86]. We visualize the results of these methods on MVTEC [2] test
images. In comparison with DRAEM, Argus demonstrates strong performance in detecting anomalies with less noise in the predicted
anomalous region, which is critical in deciding anomalies.



(a) Input Image (b) Ground truth (c) Argus (d) DINOv2 (e) InvPT

Figure 13. Qualitative comparisons between Argus, DINOv2 [57] and InvPT [79] on depth estimation task. We visualize the results of
these methods on NYUV2 [65] test images. Argus outperforms DINOv2 and InvPT in fine-grained details and the prediction sharpness.



(a) Input Image (b) Ground truth (c) Argus (d) InvPT

Figure 14. Qualitative comparisons between Argus and InvPT [79] on object boundary detection task. We visualize the results of these
methods on NYUv2 [65] test images. Argus significantly outperforms InvPT and produces more accurate predictions.



(a) Input Image (b) Ground Truth (c) DINOv2 (d) Argus

Figure 15. Qualitative comparisons between Argus and DINOv2 [57] on the instance segmentation task, which demonstrate higher
accuracy of the Argus predictions. We use images from the test set of COCO dataset for this visualization.



(a) Input Image (b) Ground Truth (c) DINOv2 (d) Argus

Figure 16. Qualitative comparisons between Argus and DINOv2 [57] on the panoptic segmentation task using ADE20K, which demon-
strate higher accuracy of the Argus predictions. We use images from the test set of ADE20K dataset for this visualization.



(a) Input Image (b) Ground Truth (c) DINOv2 (d) Argus

Figure 17. Qualitative comparisons between Argus and DINOv2 [57] on the semantic segmentation task. We use the ADE20K dataset
for this visualization and observe that Argus improves over the segmentation maps generated from the baseline DINOv2 model.



(a) Input Image (b) Ground-Truth (c) Argus (d) DINOv2

Figure 18. Qualitative comparisons between Argus and DINOv2 [57] on human parsing task using PASCAL-Context dataset [55]. Argus
generated more accurate segmentation masks, especially in challenging cases.
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(a) Input Image (b) Ground-Truth (c) Argus (d) DINOv2

Figure 19. Qualitative comparisons between Argus and DINOv2 [57] on salient object detection task using PASCAL-Context [55]
validation images. Argus outperforms DINOv2, producing more precise predictions.



(a) Input Image (b) Ground-Truth (c) Argus (d) DINOv2

Figure 20. Qualitative comparisons of surface normals prediction between Argus and DINOv2 [57] on NYUv2 dataset [65]. Argus
captures fine details in scenes with intricate structures, generating better surface normal maps compared to DINOv2.
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