DAGSM: Disentangled Avatar Generation with GS-enhanced Mesh

Supplementary Material

In this document, we provide more results of ablation
studies (A) and implementation details of our method (B).

A. More ablation studies

A.1. Ablation study on view-consistent refinement.

We conduct an ablation study to demonstrate the bene-
fits of three components in the view-consistent refinement
step: cross-view attention (CV-Att), IAW-DE, and using a
weighted MSE loss with weighted map VW (wMSE). To bet-
ter demonstrate the texture, we render a single layer of the
white lace dress (i.e., the layer not occluded by the body)
on a black background.

As shown in Fig. 8(1), directly using original SDEidt as
in [87], the results have inconsistent texture style. More-
over, the overlapping texture regions of two rendered views
are blurred due to view inconsistency. Without cross-view
attention (Fig. 8(3)), the consistency of the texture de-
creases after enhancement, proving the importance of cross-
view attention in maintaining texture style consistency.
Without IAW-DE and the weighted MSE loss (Fig. 8(2)),
the overlapping texture regions of two rendered views can
easily get blurred even if their textures are slightly incon-
sistent. Fig. 8 (4) shows that applying a weighted MSE
loss partially alleviates the blurred texture in overlapping
regions caused by view inconsistency. However, IAW-DE
addresses this issue more effectively (4 vs. 5) by allowing
each view to focus on enhancing the most directly observed
regions. Although the weighted MSE loss offers limited
improvement (Fig. 8(5)), we also include it for its imple-
mentation simplicity.

A.2. Ablation study on different 3D representations.

In Fig. 9, we compare our GSM with the traditional mesh
representation to generate a white lace dress while keeping
all the other settings the same. As demonstrated in Fig. 9,
our GSM can handle transparent fabric texture while tradi-
tional mesh with texture cannot automatically learn texture
transparency.

B. Implementation Details

We provide more implementation details that cannot be in-
cluded in the main paper due to space.

B.1. Details of IAW-DE

As described in Algorithm. I, we input the weight map
W, the rendered image V), the rendered image V), the text
prompt y, and refine strength n = 0.4 to Stable Diffusion

Algorithm 1 Incident-angle-weighted denoising (IAW-DE)
Input: The weight map W; the rendered image V; the text
prompt y; refine strength n (i.e., number of denoising steps)
Qutput: The refined image V.
z = SD3_encode(V)
2, = addnosie(z, n), z,, = denosie(Z,,n,y)
fort =n—1to0do
2; = addnosie(z, t)
for W; in W do
if W, > % then
21‘,,]' = Zt41,5
end if
end for
z; = denosie(Z;, t,y)
: end for
LY = SD3_decode(zg)
13: return V
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3 (SD3) [16], obtaining the refined image V via incident-
angle-weighted denoising (IAW-DE).

B.2. Formula of the regularizations in Eq. 6

In body generation (Sec. 4.2) and texture generation
(Sec. 4.3), we add regularizations on the positions (L)),
scales (L), and rotations (L£,.) into Eq. 6 and Eq. 10 to con-
strain the movement of the Gaussians.

Positions regularization £, constrains the projection
point of the Gaussian center on the bound triangle to be
within the boundaries of the triangle, with a height offset
below 0.1:

Ep = ;C,\()\l)—l—ﬁ)\()\g) + ;C,\(l — A1 — /\2) + ||max(z,01))||§

=\, ifA<O0
Lix=140, ifOo<i<]1
A=1, ifA>1

12)

Following GaussianAvatars [56], we constrain the local
scale of each 2D Gaussian to remain below 0.6:

2
L, = [|max(s,0.6)|[3 (13)
Rotations regularization £, constrains the normal direc-

tion of the 2D Gaussian disk to be consistent with the nor-
mal direction 72 of the bound triangle:

L, = cosine(Rrn, 1) (14)

where n is vector [0, 0, 1].
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Figure 8. Ablation study on three components in view-consistent refinement: cross-view attention (CV-Att), IAW-DE, and using a weighted
MSE loss with weighted map WW (wWMSE). Using the original SDEdit (1) results in inconsistent texture styles and thus blurred overlapping
regions due to view inconsistency. Removing cross-view attention (3) reduces texture consistency, proving the importance of cross-view
attention in maintaining texture style consistency. Without IAW-DE and the weighted MSE loss (2), the overlapping texture regions of
two rendered views can easily get blurred even if their textures are only slightly inconsistent. Applying a weighted MSE loss (4) partially
alleviates the blurred texture in overlapping regions caused by view inconsistency. However, our IAW-DE addresses this issue more
effectively (4 vs. 5) by allowing each view to focus on enhancing the most directly observed regions. Although the weighted MSE loss
offers limited improvement (5 vs. Ours), we also include it for its implementation simplicity.
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Figure 9. Ablation study on different 3D representations to show the advantage of GSM in handling transparent fabric texture. We compare
our GSM with the traditional mesh representation to generate a white lace dress while keeping all the other settings the same. Our GSM
can handle transparent fabric texture while traditional mesh fails to learn the transparent texture using existing differentiable engine (e.g.

Nvdiffrast [35]) automatically.

Table 2. Selected body regions to initialize the garment 2DGS.

Types Selected regions
t-shirt Spines, Shoulders, Arms
long-shirt Spines, Shoulders, Arms, ForeArms
hoodie Spines, Shoulders, Arms, ForeArms
down coat Spines, Shoulders, Arms, ForeArms, Hips
coat Spines, Shoulders, Arms, ForeArms, Hips, UpLegs
shots Hips, UpLegs
pants Hips, UpLegs, Legs
shoes Foots, ToeBases
sleeveless dress Spines, Shoulders, Hips, UpLegs
long sleeve long dress | Spines, Shoulders, Arms, ForeArm, Hips, UpLegs, Legs
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Figure 10. Inputs to SAM: the clothed human image Z, and the
bounding box (red) of the Garment 2DGS (i.e. the hoodie) as
SAM’s prompt.
B.3. Details of initializing 2D Gaussians in Sec. 4.3

As shown in Tab. 2, we use SMPL-X [53] part segments
to select the 2DGS from the corresponding body regions to
initialize the garment 2DGS for different clothing types.

B.4. Details of using SAM to obtain semantic masks

We implement SAM [33] via Huggingface [72]. Using the
bounding box (the red box in Fig. 10) of the rendered gar-

Table 3. Learning rates of different parameters.

Parameter Learning rate
B 0.01

D 0.0001

u 0.0002—0.00002
s, T 0.005

U.,c 0.01

Uy, 0,0 0.1

ment’s 2DGS as the box prompts, we input it along with
the clothed human image Z, to SAM to obtain the semantic
mask M of the garment.

B.5. More implementation details

We use the official code [23] to implement 2D Gaussian
Splatting. We use the Adam optimizer with betal = 0.9,
beta2 = 0.999, weightdecay = 0, and epsilon = 10715
for optimization and the learning rates of different param-
eters can be found in Tab. 3. We set A\,=)\,=10, A\,=1 in
Eq.6&10 and Ag;s=1, Agimootn=100 in Eq.9. The rendered
size is 1024x1024 and the RFDS loss is calculated on Sta-



ble Diffusion 3 [16], with the CFG weight 100 and time
steps t ~ 1£(0.02,0.98). All experiments are conducted
on an NVIDIA A100 (40 GB). The body generation takes
3K iterations, consuming roughly 60 minutes. In the cloth
generation, original 2DGS generation and texture genera-
tion require 2K iterations each, taking 30 and 20 minutes,
respectively. In body generation and cloth generation, the
view angles range from -15°to 30°in elevation and -180°to
180°in azimuth. View-consistent refinement takes 16 min-
utes, with 8 views around the object at 45° intervals, and the
0° view is the canonical view.
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