IDOL: Instant Photorealistic 3D Human Creation from a Single Image

Supplementary Material

In this supplementary material, we provide additional
details and visualizations to support the claims made in
our main paper. Sec. A provides further details on the
HuGelOOK dataset, including visualizations, important
statistics, and the methodology to enhance the 3D consis-
tency and diversity of multi-view images. Sec. B describes
the training procedure and setup for our proposed method,
IDOL. Sec. C presents additional experimental results, in-
cluding comparison tables and results from the user study.

A. More Details of HuGel00K Data

This section provides a more detailed explanation of the
HuGelOOK dataset generation process, along with addi-
tional visualizations. Sec A.l describes our approach to im-
proving the 3D consistency of MVChamp during training,
while Sec A.2 presents the prompt template and attribute
set used to generate reference images, as well as the gener-
ation process with MVChamp. Sec. A.3 demonstrates more
visualization of the dataset.

A.1.Improving 3D Consistency of Image Animation

Champ [21] is one of the state-of-the-art Human Image An-
imation models, enhanced by multiple conditions rendered
from DWPose and SMPL. We employ a two-stage training
process to enhance the 3D consistency of the Champ model
for human multi-view synthetic, referred to as MVChamp.

Fine-tuning Champ on Large-scale Human Videos with
Whole-body Conditions To enable Champ to learn more
human 3D prior knowledge, we curate a dataset of approxi-
mately 100K dance videos for fine-tuning, of which around
20K explicitly contain human turning motions. Full param-
eter training of MVChamp on such a large dance dataset
effectively enhances its understanding of human 3D prior
knowledge. Additionally, we employ HaMeR [12], a state-
of-the-art model for 3D hand reconstruction, to specifically
reconstruct hand poses from images. These reconstructed
hand poses are rendered into depth maps and used as an ad-
ditional pose control signal for precise whole-body recon-
struction and animation.

Fine-Tuning Temporal Blocks on 3D Human Dataset
We use the open-source scanned dataset THuman 2.1 [19],
rendered in Blender, to produce 24 uniformly sampled
views along the horizontal dimension to fine-tune the tem-
poral layers of MVChamp using standard diffusion loss.

Improving Temporal Consistency from the First to Last
Frames Although the MVChamp model generates highly
continuous multi-view images between adjacent frames,
significant discrepancies remain between the first and last
views, even though these two views are continuous in con-
tent. This issue likely arises from the model’s emphasis dur-
ing training on ensuring continuity between adjacent frames
while neglecting the larger temporal gap between the first
and last frames. Thus, we propose the Temporal Shift De-
noising Strategy to address this issue. During each denois-
ing step, we shift the current latent inputs and pose condi-
tion signals along the temporal axis, moving the latent in-
puts and pose condition of the last frame to the first frame.
This strategy ensures that each frame can access contextual
information during most of the denoising steps, effectively
eliminating discrepancies between the first and last frames
at the same inference cost.

A.2. Generating Balanced and Diverse Images

Balanced, diverse, high-quality, high-resolution, and full-
body images are scarce in existing human-centric datasets,
and they are challenging to collect on the Internet due to
copyright and portrait rights issues. Therefore, we mix
the real-life images and generate photorealistic images to
obtain the large-scale quantity and high-quality images.
Specifically, we extract approximately 10,000 real-life im-
ages from the open-source dataset DeepFashion [11] and
use Flux [5], a state-of-the-art text-to-image model, to gen-
erate balanced and diverse human reference images. We
ensure balance and diversity across five dimensions during
image generation: area, clothing, body shape, age and gen-
der. Each dimension value is randomly selected from a
large set of options generated by GPT-4 [1], with prompt
templates as follows: Front view, full-body pose of a {age}
old {body shape} {area} {gender} wearing {clothing} and
visible hands. He/She stands against a white background,
evenly lit. Ultimately, we collect a total of 100,000 balanced
and diverse full-body human reference images.
For each dimension, the possible options are as follows:
1. Area: United States, Canada, Mexico, Guatemala,
Cuba, Brazil, Argentina, Colombia, Chile, Peru, United
Kingdom, Germany, France, Italy, Spain, Nether-
lands, Belgium, Switzerland, Poland, Sweden, Nige-
ria, Egypt, South Africa, Kenya, Morocco, Ghana,
Tanzania, Ethiopia, Uganda, Algeria, Saudi Arabia,
Iran, Turkey, Israel, United Arab Emirates, Qatar,
Kuwait, Jordan, Oman, Lebanon, Kazakhstan, Uzbek-
istan, Turkmenistan, Kyrgyzstan, Tajikistan, India, Pak-
istan, Bangladesh, Sri Lanka, Nepal, Bhutan, China,
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Figure 1. The visualization of the reenactment.

Japan, South Korea, Mongolia, North Korea, Indone- Trinidad and Tobago, Panama, Costa Rica, Nicaragua,
sia, Thailand, Vietnam, Malaysia, Philippines, Singa- Honduras, El Salvador, Belize, etc.

pore, Myanmar, Cambodia, Laos, Brunei, Australia, 2. Clothing: T-shirts, Jeans, Casual pants, Dresses,
New Zealand, Papua New Guinea, Fiji, Solomon Islands, Shorts, Tank tops, Sweaters, Cardigans, Jumpsuits,

Jamaica, Haiti, Dominican Republic, Puerto Rico, Hoodies, Suits, Business shirts, Formal skirts, Dress



pants, Blazers, Tie, Waistcoats, Formal shoes, Brief-
cases, Leather belts, Sport shirts, Fitness clothes, Sports
shoes, Tracksuits, Gym shorts, Leggings, Swimwear, Cy-
cling gear, Compression wear, Evening gowns, Tuxe-
dos, Long dresses, Tailcoats, Cocktail dresses, Party
wear, Ceremonial suits, Ball gowns, Dress shoes, Fine
jewelry, Hiking clothes, Waterproof jackets, Thermal
wear, Camping gear, Fishing vests, Hunting apparel,
Snowboarding pants, Rain boots, Cotton shirts, Linen
dresses, Chiffon blouses, Sandals, Sunglasses, Short
sleeves, Beachwear, Crop tops, Wool coats, Thick cotton
sweaters, Fur jackets, Beanies, Boots, Gloves, Scarves,
Thermal leggings, Padded parkas, Insulated boots,
Hanfu, Kimono, Sari, African tribal dresses, Scottish
kilts, Bavarian lederhosen, Moroccan kaftans, Hawai-
ian shirts, Russian ushankas, Streetwear, Avant-garde
designs, Fusion wear, Boho chic, Minimalist styles, High
fashion, Urban outfits, Eco-friendly clothing, Techwear,
Nurse uniforms, Firefighter gear, Construction vests, Po-
lice uniforms, Military boots, Lab coats, Coveralls, Mili-
tary uniforms, Academic gowns, Judicial robes, Clerical
vestments, Diplomatic suits, Regalia, etc.

3. Body shape: Slight, Lean, Petite, Athletic, Fit, Average,
Built, Buff, Bodybuilder, Full-figured, Stocky, Large.

4. Age: 20-30 years, 30—40 years, 40-50 years, 50—-60
years, 60-70 years, 70-80 years, 80-90 years.

5. Gender: Female and male.

A.3. Additional Visualization

Fig. 3 shows the diversity of reference images generated us-
ing our prompt template and attribute set. Fig.4 and Fig. 5
illustrate the multi-view images under diverse poses gener-
ated by our MVChamp.

A 4. Application: Human Video Reenactment

The goal of this application is to replace a person in a ref-
erence video with a new identity while preserving the back-
ground and pose. Given a reference image that provides the
target identity, and a reference video that provides the pose
and background of the original person, the task is to seam-
lessly swap the person in the video while maintaining the
integrity of the scene. We visualize the results in Fig. 1.

To achieve this, we follow a multi-step process:

Identity Reconstruction: The /DOL model is used to
reconstruct an animatable 3D human from the reference im-
age. This model generates a highly detailed and realistic
representation of the target identity, allowing us to manipu-
late the avatar to match various poses.

Background Inpainting: The video inpainting process
restores the regions of the video frame where the original
person has been replaced, ensuring a seamless background.
It involves detecting and tracking the target area using a seg-
mentation method, which is initialized and refined by the

widely used zero-shot segmentation model, Segment Any-
thing Model (SAM)[8]. Once the target area is segmented
and tracked, the remaining regions are completed using the
video inpainting method, ProPainter[20], ensuring the back-
ground is seamlessly restored with no traces of the replaced
identity.

Pose Animation: The target pose is extracted from the
reference video [3, 9], and the reconstructed human model
is animated to match this pose. The IDOL model provides
precise control over the 3D human’s pose, including fine
details such as finger movements, allowing it to adapt dy-
namically to the reference video’s actions. After animating
the 3D human, we render it into the target view and seam-
lessly blend it with the background.

Utilizing IDOL, our process offers an efficient and high-
quality solution for identity replacement in videos, provid-
ing greater stability and lower computational cost compared
to 2D-based approaches [0, 21]. This opens up new pos-
sibilities for digital content creation and interactive media
applications.

A.S. Representation Comparisons

To further illustrate the differences between our method and
previous approaches, we provide a comparison in Fig. 2.
Below, we explain the key differences:

Comparison to PIFU: PIFu predicts the 3D human
shape directly from a given image without leveraging a
parametric model prior. While effective for simple cases, it
often lacks robustness and precision, particularly when han-
dling challenging poses or incomplete observations [16].

Comparison to GTA/SIFU: GTA and SIFU utilize loop
optimization [16, 17] to align the reconstructed output with
SMPL models. While this alignment step is crucial for
pixel-aligned operations [13], it introduces several signifi-
cant drawbacks:

- High computational cost: Loop optimization requires
multiple iterations, adding several minutes of processing
time. Additionally, it depends on the estimation of interme-
diate representations such as masks, normals, and skeletons.

- Error accumulation: Misalignments during optimiza-
tion can accumulate over iterations, degrading the quality
of the final 3D human reconstruction.

Our Approach: In contrast, our method adopts a direct
and efficient pipeline: We extract image features using a
large-scale encoder [7], which captures rich and detailed
visual information. We then predict the 3D human shape
and appearance in a uniform space, directly providing the
3D human reconstruction along with the estimated SMPL-
X parameters.

By decoupling feature extraction from SMPL-X-based
3D prediction, our approach avoids the error accumulation
inherent in optimization-based methods. When pose infor-
mation is unnecessary, our method relies primarily on body



shape estimation, reducing the dependency on precise pose
alignment. Furthermore, our method supports direct anima-
tion and editing (e.g., shape and texture), unlocking addi-
tional applications and expanding its potential value in dig-
ital content creation.

Given Image 3D Human
PIFU Model
GTA/
SIFU
Model
IDOL A-pose
(6]
(Ours) Model TN

Figure 2. Visualization of different approaches for 3D human re-
construction. Unlike PIFu, which directly predicts the 3D human
without a parametric prior, and GTA/SIFU, which relies on com-
putationally expensive loop optimization for SMPL alignment, our
IDOL method leverages SMPL-X as a prior. This enables more ro-
bust and accurate reconstruction while avoiding the pitfalls of error
accumulation. Furthermore, our method supports direct animation
and editing, enabling additional applications in digital content cre-
ation.

B. More Details of IDOL

In this section, we describe the training setup and method-
ology for our proposed method, IDOL.

B.1. Implement Details

Our models are trained on a cluster of 32 NVIDIA H100
GPUs for approximately 1 day, with a batch size of 32. The
optimization is performed using the Adam optimizer with a
learning rate of 5e — 4. A warm-up schedule of 3, 000 steps
is employed to stabilize training in the initial stages.

The training loss function is a weighted combination of
VGG perceptual loss and Mean Squared Error, balanced
with a 1 : 1 ratio. This loss formulation ensures both per-
ceptual quality and pixel-wise accuracy.

B.2. Network Architecture

The proposed network consists of a multi-stage structure
designed for high-dimensional feature extraction and re-
construction tasks. The primary components include the
pre-trained encoder, UV-Alignment Transformer, and UV
decoder. For the encoder, we utilize the large-scale model

Sapiens [7] to extract and tokenize human features from the

input image.

UV-Alignment Transformer. The neck module employs a

hierarchical design inspired by recent advancements in vi-

sion transformer architectures [7], featuring a decoder em-

bedding layer with a width of 1536 and 16 transformer lay-
ers. Each transformer encoder layer consists of the follow-
ing components:

1. A layer normalization operation for input stabilization,
enhancing training dynamics, and preventing gradient
instability.

2. A multi-head self-attention mechanism that maps inputs

into query, key, and value representations, followed by

a linear projection layer to integrate attention outputs.

This process is regularized through dropout for improved

generalization and further normalized to ensure consis-

tent feature scales.

A feed-forward network (FFN) composed of two dense

layers with a GeLU activation function applied between

them. The FFN architecture is complemented by in-
termediate normalization layers to enhance stability and
improve optimization convergence.

UV Decoder. The decoder begins by reshaping tokens into

a 2D feature map of 64 x 64 resolution. It employs a hier-

archical upsampling and convolutional strategy to progres-

sively refine and synthesize outputs. The upsampling mech-
anism uses transposed convolutional layers to increase spa-
tial resolution, with each stage incorporating normalization
and non-linear activation for stable feature transformations.
Specifically:

»

1. Upsampling Blocks: The decoder incorporates multiple
transposed convolutional layers, which double the spa-
tial resolution at each stage. Instance normalization and
S1iLU activations provide stable scaling and enable non-
linear feature transformations.

2. Convolution Block: Three convolutional layers with out-
put channels {128, 128, 32} further process the features,
applying instance normalization and activation functions
to improve feature quality and representation.

Head Module. Following [18], we construct two distinct
convolutional networks for decoding geometry and color
separately. These networks progressively process feature
channels, transitioning from an initial channel size of 32 to
the target parameters ¢, , s, , Or, for geometry and c;, for
color.

C. Experiment

In this section, we present additional experimental results,
including comparison tables and the user study. We show
additional visual comparisons in Fig. 6 and Fig. 7. We
compare with the reported results by Weng et al. [14] and
AlBahar et al. [2].
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Figure 6. More visualization for comparison in the in-the-wild cases. We compare with the reported results by HumanL.RM[ 14].
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Figure 7. More visualization for comparison in the in-the-wild cases. We compare with the reported results by HumanSGDI[2].

More Qualitative Comparisons. We show additional vi- can occur due to inaccurate pose parameters, as shown in
sual comparisons in Fig. 6 and Fig. 7. We compare with the Fig. 6 of the main content. This occurs because the avatar
reported results by Weng et al. [14] and AlBahar et al. [2]. is re-posed based on the estimated SMPL-X parameters.

Fig.8b demonstrates that providing accurate pose informa-
tion resolves this issue.

Effect of the SMPL-X Parameters on Reconstruction.

Although the reconstruction quality remains good with im-

perfect SMPL-X input, errors such as leaning or bent shapes
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Figure 8. (a) Comparison with Zero123. (b) Original results with leaning/bent poses due to inaccurate SMPL-X, and corrected results with
refined SMPL-X. (c) The results on 2K2K. (d) Challenges in large pose and loose cloth animation. (e) 3D animating framework using
TRELLIS for image-to-3D and Make-It-Animatable for rigging and animation.

Dataset WE (x1073) |
THuman2.1 5.38
HuGe1l00K (MVChamp) 7.33
Zerol23 10.51

Table 1. Warping Error (WE) comparison across datasets and multi-view
synthesis methods, evaluating 3D consistency.

Method MSE| PSNR{1 LPIPS |

SIFU 0.032 15.054 1.303
GTA 0.035 14.833 1.340
Ours 0.023 16.688 1.171

Table 2. Quantitative comparison on the 2K2K dataset.

Experimental Comparison with Other Multi-View Im-
age Generation Models. Here, we compare MVChamp
with traditional multi-view image generation models based
on text-to-image synthesis, specifically Zerol123, in the
context of human multi-view generation. We compare
WE [10] in Tab. 1, evaluating 50 random cases. The THu-
man2.1 dataset serves as the upper bound, and HuGe100K
shows comparable results; Regarding multi-view genera-
tion, MVChamp outperforms Zero123 by 30.1% in 3D con-
sistency. Zero123 generates one novel view at a time, caus-

ing multi-view inconsistency. In contrast, MVChamp gen-
erates 24 views per batch, ensuring consistency. It also ben-
efits from redundant human priors from dance videos and
provides more accurate pose control, enabling well-aligned
SMPL-X parameters. See Fig. 8a for a visual comparison.

Additional Cases for Evaluating Generalization to Com-
plex Poses and Loose Clothing. Fig. 8d demonstrates
IDOL’s capability to handle complex poses and loose cloth-
ing. This is made possible by our novel architecture,
which extracts global features using Sapiens and the di-
verse HuGelOOK dataset. While loose clothing presents
challenges due to significant deviation from the body,
HuGel00K provides numerous examples, allowing IDOL
to recover animatable 3D avatars effectively and reduce is-
sues like tearing in animations, especially in areas such as
skirts. For more examples and animations, please refer to
the introduction video (38s-54s).

Comparison with 3D Animating Methods. Classical
animation methods typically involve image-to-3D conver-
sion, rigging, and animation. Fig.8e demonstrates this
pipeline using TRELLIS[15] and Make-It-Animatable [4],
which struggles with topology changes, such as detaching
the hand from the waist, resulting in artifacts. In contrast,



our approach (left) handles these transitions naturally.

Evaluation on Additional 3D Datasets. We performed
the suggested evaluation on 2K2K using the same settings
as in the paper. The quantitative and qualitative results are
presented in Tab.2 and Fig.8c, offering valuable insights
into IDOL’s generalizability.

User Study. We conducted a user study with 20 partici-
pants via evaluating 50 cases. Participants ranked results
based on face, clothing, back-view consistency, and the
overall quality. The aggregated results are presented in
Tab. 3, showing the superiority of our method.

Method Face Clothing  Back  Overall
GTA 0% 2.27% 0% 0%
SIFU 2.27% 4.55% 4.55% 4.55%
HumanLRM 4545% 43.18% 36.36% 45.45%
Ours 52.28% 50.0% 59.09% 50%
Table 3. The user study. We evaluated IDOL on selected

cases reported by HumanLLRM[14], designed to highlight their
strengths. Despite the selection for HumanLRM, our method
achieves slightly superior performance, demonstrating greater ro-
bustness and effectiveness under comparable conditions.
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