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Figure 1. CNN-based Gaussian Avatar Pipeline. Our CNN model produces delta Gaussian maps D; [20, 25] and static color C from a
multi-view video. Similarly to Animatable Gaussians [20], we constrain the network to operate in a reduced linear space, i.e., the per-frame
mesh M is projected on a PCA basis M pca; = I'pca(M;) which is then input to the network IT after converting the mesh to a normal
map ¢(M pca, ). The static color network is conditioned on neutral mesh M.

A. 3D Gaussian Splatting Preliminaries

3D Gaussian Splatting (3DGS) [14] is an alternative ap-
proach to Neural Radiance Field (NeRF) [22] for static
multi-view scene reconstruction and rendering under novel
view. Kerbl et al. [14] parameterize the space as scaled 3D
Gaussians [ 18, 37] with a 3D covariance matrix 3 and mean
75

G(x) = e 3= TE 7 (x—p) (1)

To render this representation, Zwicker et al. [43] employ
the projection of 3D Gaussians onto the image plane using
the formula ¥’ = AWXWT AT, where X/ represents the
covariance matrix in 2D space. Here, W denotes the view
transformation, and A represents the projective transforma-
tion. To avoid direct optimization of the covariance matrix
3 which must be positive semidefinite, Kerbl et al. [14]
use scale S and rotation R which equivalently describes 3D
Gaussian as a 3D ellipsoid ¥ = RSS”R7. Finally, 3DGS
follows Ramamoorthi et al. [28] to approximate the diffuse
part of the BRDF [8] as spherical harmonics (SH) to model
global illumination and view-dependent color. Four bands
of SH are used which results in a 48 elements vector.

B. Appearance Maps Generator

Similarly to StyleAvatar [36] and Animatable Gaussians
[20], we use a StyleGAN-based [13] encoder and decoder
network for this image translation. However, in contrast to
Animatable Gaussians [20], we propose a more lightweight
image translation pipeline, where we reduce the number of

encoders from three to two and the number of decoders
from six to two, and decrease the size of the StyleGAN
[13] decoder. To efficiently use the 2D map space, we
do not use projective textures from meshes [36], but a UV
parametrization which reduces half of the decoders in com-
parison to StyleAvatar. Moreover, we do not use triplets
of the encoder-decoder, as we combine all properties of the
Gaussians into one map G; following ASH [25]. Therefore,
we define our network as follows:

D; : TI(¢(I'pca(M))), )
C:¥(¢(M)),

where D; € R XH>*W is a map containing the delta for po-
sitions Ayps € R3, rotation A,.,; € R?, scale Agqre € R3,
and opacity A,, € R. The colors C € R¥>**W of the
Gaussians are predicted using the normal map ¢(M) of the
canonical mesh M (¢ is the normal map extractor from
a mesh). Similar to Animatable Gaussians [20], we use
a PCA layer I'pca which serves as a low-pass regulariza-
tion filter for the input. I'pca is built by using PCA on the
meshes M; for the training frames and 16 principle com-
ponents are used as the basis. For the training, we use the
projection of each incoming mesh M ; on the PCA manifold
Mpca, = Tpca(M;). Optionally we use a feature texture
that is concatenated with rasterized normals for the D; con-

ditioning.
The final Gaussian map G; € is obtained
by applying the deltas to the canonical Gaussians G [20,
42]. The deformed position of 3D means is computed as
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Ablation | L1| LIPIS| PSNR{ SSIM?
Ours 0.0181  0.1171 24.2997 0.9134
Absolute 0.0181 0.1172 24.3065 0.9130
FLAME 0.0181  0.1169 24.2910  0.9130

EMOCA [4] | 0.0180  0.1165 242715 09132
DECA [5] 0.0184  0.1189 24.2181 0.9127

Table 1. We performed an ablation study of our regressor using
self-reenactment tasks. In this study, we tested configurations that
used only EMOCA or DECA features, as well as a version where
the EMOCA regressed FLAME expressions. Lastly, we show the
effect of using absolute features instead of the relative ones used
in Ours (features relative to the neutral face).

T,(M +D,,,). One major distinction compared to AG
[20] is the way how the transformation from the canonical
space to the deformed space is handled. We employ de-
formation gradients, following Sumner et al. [32]. This ap-
proach allows for greater flexibility regarding input meshes,
provided they maintain full correspondence.

Given a mesh M pc 4, for the frame ¢, we define the de-
formation gradients as J; = Ej Ej_l, where E]' € R¥3 and
E; € R3*3 contain the Frenet frame (tangent, bi-tangent,
normal) of the triangle j defined in deformed and canonical
spaces, respectively. Using these deformation gradients and
the known correspondences between the Gaussian map and
the meshes, we transform the Gaussians from the canonical
space to the deformed space.

Note that our color map C is static and does not model
view-dependent effects; this means that we force the net-
work to recover globally consistent colors for each Gaus-
sian similar to a texture in the classic 3DMM. Therefore,
G ; must model the wrinkles and self-shadows.

Finally, we use Gaussian splatting [14] to render the re-
gressed Gaussian maps. We define the predicted color of
pixel (u,v) as:

i—1
(_ju,v = Z ciq; H(l — ), 3)
ieN j=1

where c; is the Gaussian color predicted by ¥, A is the
number of texels and «; is predicted opacity per Gaussian.

B.1. Image-based Coefficents Regressor

Table 1 shows an ablation study in the context of input to
our MLP regressor which predicts GEM coefficients. Fig-
ure 2 provides an additional qualitative comparison. Using
a pre-trained decoder such as EMOCA demonstrates strong
potential for cross-reenactment by leveraging robust priors.
Future work will explore further methods for image-based
control of GEM, with a potential approach being the incor-
poration of additional modalities, such as sound, into the
EMOCA-based regressor.

B.2. CNN Training Details

The training objective of the CNN-based appearance model
is defined as £ = Lcolor + LReg- Lcolor s a weighted sum
of three different photo-metric losses between the rendered
image C and the ground truth C:

Lcoior = (1 —w)Ly + wlp.ssim + (Lvaa,

N 2 & PR C))
Lreg =MD | Bpos; |+ |[8scate ||
j=1

J=1

where w = 0.2, ( = 0.0075 (after 150k iterations steps and
zero otherwise), Lp.ssiv 1S a structural dissimilarity loss,
and Lvgg is the perceptual VGG loss. Lpge, regularizes
position offsets Aposj and scales Sscqie; to stay small w.r.t.
the input mesh. We train our model for 10° steps using
Adam [15] with a learning rate 5e—4 and a batch size of
one which takes around 10h on a Nvidia RTX4090.

Our method and all the baselines were trained using
the same multiview input data sourced from the dataset
provided by Qian [27], which includes multiview images
from the NeRSamble dataset [17] as well as tracked meshes.

C. Compression Ablation Study

In the domain of 3D Morphable Models, principle compo-
nent analysis (PCA) emerges as a cornerstone approach, in-
strumental in crafting the foundational framework for cap-
turing face expressions and shapes with remarkable fidelity
[2, 19]. This methodology has been adopted with notable
success, not only in modeling facial features but also in ex-
trapolating the nuances of human bodies [21, 24, 26], and
even in depicting intricate hand modeling [29].

Expanding upon this foundation, GEM proposes a novel
technique involving an ensemble of eigenbases of 3D Gaus-
sian attributes for achieving a photorealistic human head
appearance. This representation exhibits significant adapt-
ability concerning both quality and size, leveraging a funda-
mental trait of linear basis that proves beneficial when ap-
plied to diverse devices with varying capabilities in digital
human applications. Figures 8 and 9 illustrate the qualita-
tive and quantitative results of GEM. Notably, even under
substantial compression (utilizing only ten principal com-
ponents), our approach consistently yields high-quality out-
comes. More examples can be found in Figures 10, 11, 12
and 13.

D. Human Head Avatar Compression

Human avatar compression is an important topic, but it is
still in its early stages and not well-explored. For neural-
based representations, there are methods to compress net-
works, such as pruning [9], quantization [12], or knowledge
distillation [10], as well as small and compact MobileNets
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Source Relative DECA [5] Absolute EMOCA [4] FLAME [19]

Figure 2. Our experiments show that using pre-trained regressor like EMOCA [4] and DECA [5] work well for driving our GEM model. In
this context, DECA and EMOCA refer to using either of the regressed feature vectors. FLAME represents the expression vectors regressed
by EMOCA. Relative and absolute denote whether the EMOCA + DECA features are used directly or as relative changes from a neutral
face.
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Figure 3. The quality comparison to Gaussian Avatars [27] shows better performance even though our model is similar in size to its
Gaussian cloud and we do not need an additional FLAME model which weighs 90MB.




[11]. Interestingly, in the latter context, GEM can be con-
sidered as a single-layer MLP without any activation func-
tion. Unfortunately, these methods still require an expensive
forward pass and may not be well-suited for all commodity
devices.

#Comp | 1282 | 2562 | 5122
10 7] 28| 113
30 20| 83| 333
50 34| 138 | 553
Ours Net 82 | 109 | 178
GA StyleUnet | 487 ‘ 529 ‘ 636

Table 2. Memory consumption (in MB with float32) of GEM de-
pends on the texture resolution and number of components. Our
model shows much better granularity compared to the fixed size of
neural networks and can be adjusted on the fly depending on the
hardware.

#Comp | 1282 | 256 | 5122

10 31.47 | 31.90 | 31.80
30 33.46 | 34.30 | 34.26
50 33.79 | 34.75 | 34.73

Table 3. PSNR color error in dB for one actor with a different
number of principle components and Gaussian map resolutions.
Despite heavy compression (10 principal components), the avatar
is still of high quality. More details are in the supplementary ma-
terial.

The recently introduced Gaussian Avatars by Qian [27]
also represents a form of avatar compression, though not
in the primitives’ space but rather in the geometry space,
with Gaussians attached and deformed by triangles from a
linear face model. However, this form of appearance repre-
sentation is insufficient for capturing details such as wrin-
kles, as it rigidly adheres to FLAME rigging in the geom-
etry space. Therefore, we advocate for different compres-
sion techniques like GEM, which can leverage more pow-
erful representations and distill them into expressive, high-
quality linear models. We hope that this project will open
doors to different methods for efficiently storing and repre-
senting avatars.

E. Additional Dataset Evaluation

In Figure 14, we provide further evaluation of our approach
using the Multiface dataset [38]. This dataset encompasses
short sequences of facial expressions, ranging from ’’re-
laxed mouth open” to “show all teeth” or ”’jaw open huge
smile.” The expressions vary widely in length and complex-
ity, presenting a considerable challenge for analysis. It’s
important to note that this dataset does not provide a para-
metric 3DMM,; instead, it offers meshes in full correspon-
dence. However, as mentioned in the main text, our method
remains adaptable in this context. By leveraging the de-

formation gradient [32] to transform points from canoni-
cal space into deformed space, and assuming consistent UV
parametrization of input meshes, we can successfully nav-
igate between these spaces. As depicted in Figure 14, our
network demonstrates the ability to extrapolate to novel ex-
pressions, even amidst highly challenging facial poses.

F. Broader Impact

Our project focuses on reconstructing a highly detailed hu-
man face avatar from multiview videos, enabling the extrap-
olation of expressions not originally captured. While our
technology serves primarily constructive purposes, such as
enriching telepresence or mixed reality applications, we ac-
knowledge the potential risks of misuse. Therefore, we ad-
vocate for advancements in digital media forensics [30, 31]
to aid in detecting synthetic media. Additionally, we em-
phasize the importance of conducting research in this area
with transparency and openness, including the thorough
disclosure of algorithmic methodologies, data origins, and
models intended for research purposes.

G. Future Applications & Discussion

An interesting application venue for GEM would be a com-
bination of audio-driven methods with the appearance of-
fered by our methods. Ng et at. [23] presented photore-
alistic audio-driven full-body avatars. Despite impressive
results, the face region still does not fully convey expres-
sions and lacks realism. One way of improving it would
be incorporating recent progress in audio-driven geometry
[1, 3, 34, 35] with a dedicated appearance model offered by
GEM and our image-space regressor Figure 6.

Moreover, our neural network based appearance model
uses meshes to obtain normal maps as input to the Gaussian
map regressor (similar to the baselines). However, meshes
are limited by resolution and expressiveness, one way of im-
proving on that would be to use NPHM by Giebenhain et al.
[6] and the follow-up work [7, 16, 33] to further increase the
expressiveness of the model by explicitly capturing regions
like hair or teeth.
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Figure 4. GEM applied on different avatar methods (AG and GA) and optimized using analysis-by-synthesis. Our method is universal and
can be successfully used on point clouds and textures to distill a lightweight avatar.
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Figure 5. Additional baselines PointAvatar (PSNR: 25.8, SSIM: 0.893 LPIPS: 0.097) and AvatarMAV (PSNR: 29.5, SSIM: 0.913, LPIPS:
0.152) evaluated on the novel-view sequences.
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Figure 6. GEM can be effectively controlled in real-time by an image-space regressor which produces coefficients projected on the linear
basis of a personalized GEM avatar.
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Figure 7. Facial cross-person reenactment. The person’s expressions on the left are transferred to the respective avatars on the right. In
this experiment, we are using relative expressions based on ground truth meshes from the dataset (FLAME-based meshes reconstructed
from multi-view data). Note that this experiment does not apply to our GEM, since it is mesh-free.



Ground Truth

Figure 8. Qualitative compression quality depending on the number of basis (10, 30, 50) and resolution of the Gaussian map (1282, 2562,
512%).
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Figure 9. Compression error in PSNR (db) depending on the number of basis (10, 30, 50) and resolution of the Gaussian maps (1282,
2567, 5127).
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Figure 10. Qualitative compression quality depending on the number of basis (10, 30, 50) and resolution of the Gaussian map (1282, 2562,
512%).
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Figure 11. Compression error in PSNR (db) depending on the number of basis (10, 30, 50) and resolution of the Gaussian maps (1282,
2567, 5127).
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Figure 12. Qualitative compression quality depending on the number of basis (10, 30, 50) and resolution of the Gaussian map (1282, 2562,

512%).
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Figure 13. Compression error in PSNR (db) depending on the number of bases (10, 30, 50) and resolution of the Gaussian maps (1282,
2567, 5127).
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Figure 14. The Multiface dataset, introduced by Wu et al. [38], comprises actors performing scripted expressions in short segments. A
notable challenge arises due to the occurrence of several expressions, like ”show all teeth,” appearing only once in the dataset. This poses
a difficulty during testing, particularly when the network is required to extrapolate. Here we showcase the outcomes of the test sequences
to illustrate the effectiveness of our CNN-based network in capturing diverse and challenging facial poses, demonstrating its robustness
despite the inherent complexity of the dataset.
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