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Figure 1. Linearly interpolating zqid and zqexpr between the leftmost and rightmost avatars demonstrates that our latent manifold exhibits
smooth transitions in both expression and identity.

A. Appendix

This supplementary material includes additional compar-
isons with monocular methods such as INSTA [15], Flash
Avatar (FA) [13], and Splatting Avatar [11], as well as com-
parisons with single-image-based reconstruction methods
like PanoHead [1], MoFaNeRF [14], and HeadNeRF [4].
Additionally, we present inversions on a more diverse set of
subjects, along with failure cases.

All our inversion results used only three input images
(Figure 12) unless stated otherwise. Figure 7 compares
monocular baseline methods trained on the entire dataset
with our inversion approach. Furthermore, we provide addi-
tional examples of cross-reenactment comparisons, demon-
strating the advantages of our method compared to base-
lines trained on only 13 frames. Next, we present results
with progressively varying numbers of training frames, il-
lustrating how this influences the quality of reconstruction.
Figures 8 and 9 highlight the importance of our synthetic
prior.

We include comparisons to single-image inversion meth-
ods in Figure 10, and the losses diagrams for each stage in
Figure 2. We also present additional samples from our syn-
thetic dataset in Figure 11, as well as more interpolation
steps for our identity zqid and expression zqexpr latent spaces,
shown in Figure 1. Finally, we complement the reconstruc-
tion error evaluation with additional metrics Figure 3.
Inversion Objectives We depict the inversion optimization
loss for one subject using three images as input. We show
two stages of our pivotal fine-tuning: Figure 2a presents
identity encoder optimization in the first stage, and Figure
2b presents the second stage, where the decoding part of our
pipeline is optimized. In this particular case, the optimiza-
tion took around 5 minutes on a single Nvidia H100.
Additional Results Figure 4 illustrates a challenging inver-
sion for identities with long hair and beards, where SynShot

successfully models these features using subjects from Pref-
ace [2] dataset. Additionally, we present the failure cases of
our method, categorized into the primary scenarios where
SynShot may fail. As shown in Figure 5:
• A) Input images with facial accessories like glasses are

not supported currently as they were not used in our syn-
thetic dataset.

• B) Challenging input images, such as those with squinting
eyes or closed eyes, can introduce artifacts in the final
avatar due to difficulties in faithfully reproducing these
details.

• C) Missing hairstyles in the synthetic dataset often re-
sult in errors during inversion, particularly for uncommon
or complex hairstyles, further exacerbated by artifacts in
hair segmentation.

B. 3D Gaussian Splatting Preliminaries
3D Gaussian Splatting (3DGS) [5] provides an alternative
to Neural Radiance Field (NeRF) [7] for reconstructing and
rendering static multi-view scenes from novel perspectives.
Kerbl et al. [5] represent the 3D space using scaled 3D
Gaussians [6, 12], defined by a 3D covariance matrix Σ and
a mean µ:

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ). (1)

To render this representation, Zwicker et al. [16] project 3D
Gaussians onto the image plane using the formula Σ′ =
AWΣWTAT , where Σ′ denotes the 2D covariance ma-
trix. Here, W is the view transformation, and A is the pro-
jective transformation. Rather than directly optimizing the
covariance matrix Σ, which must remain positive semidef-
inite, Kerbl et al. [5] parameterize it in terms of scale S
and rotation R. This reformulation expresses the 3D Gaus-
sian as a 3D ellipsoid: Σ = RSSTRT . Finally, 3DGS



(a) Our pivotal fine-tuning first stage: In this part, we optimize only the
identity encoder to find the optimal projection of the input image onto our
synthetic latent space.

(b) Our pivotal second stage of fine-tuning involves fixing the optimization
latent code and focusing on optimizing the decoder to bridge the domain
gap between the synthetic avatar and real subjects. During this phase, we
typically address global illumination, identity texture, teeth color, and hair
appearance by refining the decoders.

Figure 2. An overview of the two pivotal fine-tuning stages. (a) The first stage optimizes the identity encoder. (b) The second stage
optimizes the decoder to bridge the domain gap between synthetic avatars and real subjects.

Figure 3. We evaluated the reconstruction error with respect to the
number of frames using LPIPS, SSIM, L1, and PSNR metrics. For
each frame count, we report the average error (left) and standard
deviation (right) over 600 frames across 11 subjects.

leverages the approach of Ramamoorthi et al. [8] to approx-
imate the diffuse component of the BRDF [3] using spher-
ical harmonics (SH) for modeling global illumination and
view-dependent color. Four SH bands are utilized, resulting
in a 48-element vector.

C. Broader Impact
Our project centers on reconstructing highly detailed hu-
man face avatars from multiview videos, allowing for the
extrapolation of expressions beyond those originally cap-
tured. While our technology is intended for constructive
applications, such as enhancing telepresence and mixed re-
ality experiences, we recognize the risks associated with
misuse. To mitigate these risks, we advocate for progress
in digital media forensics [9, 10] to support the detection of
synthetic media. We also stress the importance of conduct-
ing research in this field with transparency and integrity.
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Figure 4. Novel view evaluation of long hair and beard inversion using only three input images demonstrates the strong generalization
capability of SynShot, which accurately models both long hair and beards.
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Figure 5. Additionally, we present failure cases of our method, categorized into primary scenarios where SynShot may fail (from the
top): (1) input images with facial accessories, such as glasses, which are absent from our synthetic dataset; (2) challenging inputs, such as
squinting or closed eyes, which introduce artifacts in the final avatar; and (3) missing hairstyles in the dataset, leading to inversion errors
for uncommon styles, further exacerbated by artifacts in hair segmentation.



Source Ours INSTA [15] SA [11] FA [13]

Figure 6. Cross-Reenactment on a Limited Number of Frames: We compare SynShot inversion using only 3 views to SOTA methods that
utilize 13 frames. While the baseline methods produce good qualitative results on the test sequence with 13 frames, they all fail severely in
novel view and expression evaluation.



Source Ours INSTA [15] SA [11] FA [13]

Figure 7. Test View Evaluation: When comparing the test views, which are very close to the training distribution, all baselines perform
comparably well. Our method also achieves good results, despite the prior model being insufficiently refined in some cases (e.g., teeth).
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Figure 8. We trained each method on a different number of frames to demonstrate the importance of our prior model using test sequences.
In this experiment, we progressively increased the number of training frames up to 377. The frames were sampled from the training set
using Farthest Point Sampling defined on the 3DMM expression space. The comparison includes INSTA [15], Flash Avatar (FA) [13], and
Splatting Avatar (SA) [11].
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Figure 9. We trained each method on a different number of frames to demonstrate the importance of our prior model using test sequences.
In this experiment, we progressively increased the number of training frames up to 377. The frames were sampled from the training set
using Farthest Point Sampling defined on the 3DMM expression space. The comparison includes INSTA [15], Flash Avatar (FA) [13], and
Splatting Avatar (SA) [11].



Source Ours HeadNerf [4] MofaNerf [14] PanoHead [1]

Figure 10. Additional results of single image inversion.



Figure 11. Random samples from our synthetic dataset, showcasing a diverse range of identities, expressions, and hairstyles that would be
challenging to capture in an in-house studio with real subjects.

Figure 12. Unless otherwise stated, all experiments in this paper used three input images. Here, we present these images for each actor.
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