
TANGO: Training-free Embodied AI Agents for Open-world Tasks

Supplementary Material

1. Additional Experiments
1.1. Embodied Question Answering

We conducted preliminary experiments with TANGO on
Embodied Question Answering (EQA), utilizing an older
dataset for the task [1]. In EQA, the agent is queried with a
natural language question and it must navigate to the target
location described in the query and answer accordingly. In
the case of the MP3D-EQA dataset [1], this task is regarded
as a classification task aimed at determining the most suit-
able answer from a set of pre-defined possibilities (i.e., class
labels). For this dataset, we have: 24 colors, 18 rooms, and
25 objects with perfect correspondence between train and
test set. However, TANGO utilizes a different approach, in
which the agent is free to provide an answer independently
of predefined target categories, because it is not trained
specifically for the task. Nevertheless, Table 1 shows that
our model yields comparable results against trained meth-
ods both in Answer Accuracy (QA) and Distance to goal
(dT) (row 5), while requiring no training. Ti is related to
10, 30, 50, random steps away from the target object. In
particular, Neural Modular Controller (NMC) methods [2]
employ specific navigation policies trained with RL (rows
3-4). Furthermore, these models are trained from a prede-
fined list of possible answers. In contrast, our model can
provide answers using natural language. For example, in
episodes where the correct color is described as “off-white”,
while our agent’s output is “white”, these instances yield
an Answer Accuracy of 0%, despite being similar answers.
Therefore, we evaluated our model with an “answer con-
straint” mechanism in which similar answers were grouped
into the same answer. Results show that our method pro-
vides the best results among 30 and 50 steps away, sur-
passing by 4% the best performing method, confirming that
TANGO is able to navigate towards the target object even
when it is far from it in the initial position. Furthermore, in
the “answered constraint” scenario, the primary reasons for
failure can be attributed to misclassification or the failure of
the object detector to detect the object despite its presence
(i.e. failure of the “detect” module).

1.1.1 EQA Datasets Comparison

We compared the two primary datasets used in the EQA task
within embodied environments [1, 4], aiming to discuss a
key limitation of these datasets to approach the given task.
As shown in Figure 1, the more recent OpenEQA dataset
(row 2) lacks certain important features present in the older
MP3D-EQA dataset, such as target localization, which is

useful for calculating the agent’s path efficiency, as well as
a dedicated training set. Conversely, the older dataset lacks
open-vocabulary questions and the novel LLM-scoring met-
ric. Therefore, we advocate for further enhancement of
these datasets to create a comprehensive and well-designed
resource for the EQA task, where all of these characteristics
are present. Moreover, it is reasonable to hypothesize that
a model excelling in this task would likely perform well
in other purely navigational tasks (e.g., ObjNav, Lifelong
Navigation) without additional training, given the general-
ization required to interpret the input question, navigate the
environment, and provide an answer.

Figure 1. EQA Datasets comparison. Dataset comparison be-
tween MP3D-EQA [1] and OpenEQA [4].

1.2. Multi ObjectGoal Navigation

Given the zero-shot nature and the need for broad appli-
cability across diverse tasks, our approach requires the use
of open-set object detectors. We recognize that fine-tuning
these detectors to specific tasks or datasets could signif-
icantly enhance performance. However, such fine-tuning
would compromise the system’s generality. To further
demonstrate the robustness of our approach, we fine-tuned
the YOLO object detector [6] on a custom dataset generated
by placing the target objects (colored cylinders) from the
MultiON dataset [7] into HM3D and MP3D environments.
Following this fine-tuning, we evaluated our approach using
the fine-tuned detector in episodes where each consisted of
three sequential targets. The results, as shown in Table 2,
illustrate the benefits of this fine-tuning strategy.

2. Exploration Policy using Memory targets
As described in Section 3, we extend the exploration policy
from [8] by incorporating a memory mechanism based on
a stored feature vector map. At each step, the current RGB
observation is processed through a vision-language model
(BLIP2 in our implementation [3]), updating the current
view angle (a triangular-shaped region of pixels on the map)
with feature vectors for each pixel. If the navigation target
changes, the current value map is updated with a new value
map specific to the new target. This new map is calculated

Navigation (dT ↓) QA (Top-1 ↑)

Method Trained T10 T30 T50 Random T10 T30 T50 Random

PACMAN (BC) [1] ✓ 1.19 4.25 8.12 N.A. 48 40 40 N.A.
PACMAN (BC + RF) [1] ✓ 1.05 4.22 8.13 N.A. 50 42 41 N.A.
NMC (BC) [2] ✓ 1.44 4.14 8.43 N.A. 43 41 39 N.A.
NMC (BC + A3C) [2] ✓ 1.06 3.72 7.94 N.A. 53 46 44 N.A.

TANGO (ours) ✗ 3.43 4.50 5.26 7.28 42 40 38 37

TANGO (ours) +answer constraint ✗ 3.43 4.50 5.26 7.28 52 50 48 45

Table 1. MP3D-EQA results. Comparison of Navigation and QA performance across methods.

TANGO Finetune SR(↑) PRG(↑) SPL(↑) PPL(↑)

Owl-ViT2 ✗ 24 43 10 19
YOLOv8m ✓ 45 (+21%) 65 (+22%) 20 (+10%) 28 (+9%)

Table 2. Object detector fine-tuning ablation on MultiON dataset.

by applying cosine similarity between the text or image fea-
tures of the new target (obtained from the vision-language
model) and each pixel’s feature vector in the map. Figure 2
illustrates the following:

cos
(

mapval
(i,j)

)
=

m⃗apfeat
(i,j) · E⃗

target

||m⃗apfeat
(i,j) || · ||E⃗

target||
∀(i, j) ∈ mapval (1)

where E⃗ is the embedding vector of the new target (either
specified through text or image), mapfeat is the feature map
storing the vector embeddings for each pixel, and mapval is
the value map used during exploration. Frontiers are re-
trieved from an obstacle map calculated on the fly [8].

After obtaining the new value map, we assess whether
the agent may have already encountered the target object.
We sample the highest value in the map, and if it exceeds
a defined threshold, we consider the target “remembered”
and navigate directly to it. If the target object is not found
at the expected location, exploration resumes following the
standard policy from [8]. Overall, this approach enables
more efficient navigation as the model continues to explore,
and future work aimed at exploring clustering of high-value
regions could be promising.

2.1. Ablation Studies

To evaluate our memory mechanism, we conducted prelim-
inary experiments on multi-target object-goal navigation to
identify the optimal threshold, which was then used in the
experiments detailed in Section 4. Table 3 presents the re-
sults on the Multi-Object Goal Navigation dataset [7]. In
this task, similar to ObjectNav, the goal is to navigate to
target objects. However, in contrast to ObjectNav, a single

Figure 2. Exploration Policy. Illustration of the implemented
memory mechanisms in TANGO, when a new sequential target is
found.

episode consists of multiple sequential targets. We evalu-
ated agent performance using three different target types,
which are cylindrical objects distinguished by color. The
agent is required to locate all targets within a maximum of
2500 steps. If the agent incorrectly calls the “Found” action
on a target, the entire episode is deemed incorrect. Hence,
serving as an effective testbed for evaluating our memory
strategy performance. The ablation study investigates the
effect of the memory threshold on the agent’s ability to “re-
member” previously encountered objects and navigate to
them. Since the value map is normalized between 0 and
1, the memory threshold can take any float value within
this range. A threshold of 1 indicates that no memory is
used, as it is too high, while a threshold of 0 means that
memory is always utilized, potentially leading to incorrect
memory-based target selections. The results show that the
optimal memory threshold value is 0.4, as it yields the best
overall performance. We evaluate the baseline of our ap-
proach without memory (row 1) and observe that incorpo-

rating memory significantly benefits the agent, improving
the success rate by +5% and path efficiency by +2% (row
4). Additionally, the Progress metric, which tracks the per-
centage of targets found within a single episode, increases
by 4%. Overall, the memory mechanism helps enhance the
agent’s performance. Notably, thresholds are highly depen-
dent on the normalization applied during value map calcu-
lation. For instance, as shown in Table 3, the results peak
around threshold values of 0.3 and 0.4. As highlighted in
Section 5, further exploration of diverse sampling strategies
for high-value region pixels is encouraged.

Memory Threshold SR↑ Progress↑ SPL↑ PPL↑
✗ ✗ 19 39 8 17
✓ 0.2 21 39 10 18
✓ 0.3 23 42 10 20
✓ 0.4 24 43 10 19
✓ 0.5 19 40 8 17

Table 3. TANGO Ablation Study. Results on the MultiON
dataset [7], with 3 sequential targets.

2.1.1 Object Detector

A key challenge with open-set object detectors is the high
rate of false positives, particularly for objects in long-tail
or less common categories. To tackle this issue, we intro-
duced a verification step, detailed in Section 3. This step
employs an open-set classifier, such as CLIP, to determine
whether the image within the detected bounding box accu-
rately matches the predicted object category. The verifica-
tion is implemented as a simple confidence score threshold
given the two categories: the target category and “other”.
The effectiveness of this method is shown in Table 4.

TANGO CLS SR(↑) SPL(↑) DTG(↓)
Owl-ViT2 w/o 26 13 4.1
Owl-ViT2 w 28 (+2%) 15 (+2%) 3.8 (+7%)

Table 4. Object detection, false positives ablation. The detection
are fed to a CLS model for category checking.

3. Failure analysis

As previously outlined, we extracted a significant subsam-
ple for the task and manually classified the instances where
the model failed. Here we complete the analysis adding
the failures in the purely navigational case (see the bottom
of Figure 3). For this last case, the majority of failures stem
from issues in the navigation and detection modules (9.8%),
rather than planning errors by the Large Language Model

Figure 3. Failure analysis. TANGO failure analysis. (top)
OpenEQA failures, (bottom) Goat-Bench, Life Long Multimodal
navigation task failures.

(LLM) (4.2%). This discrepancy is due to the fact that nav-
igation tasks inherently involve simpler prompts, such as
“navigate to the chair in the kitchen”, which clearly spec-
ify two distinct targets. These are easier for the LLM to in-
terpret and sequence effectively. Furthermore, we observe
that the ”Timeout” category is more prevalent in Navigation
tasks compared to EQA tasks. This is particularly evident
in Open-set ObjNav, where targets are often highly ambigu-
ous, making it difficult for the open-set object detector to
identify them in simulated 3D environments. Notably, the
”Ignored goal object” category accounts for 38% of fail-
ures, significantly higher than the 17.6% observed in EQA
tasks. In contrast, the ”Didn’t see target” category remains
consistent across both tasks, accounting for approximately
20% of failures—half the size of the ”Ignored goal object”
category. This consistency indicates that the navigation pol-
icy associated with this category performs reliably for these
tasks. Concerning navigation tasks, we also identified in-
stances where the definition of success threshold distance
to the goal appeared overly stringent. Some episodes wit-
nessed the agent halting within 1 meter of the object with

the object in view. However, these instances were deemed
failures due to the sparse sampling of viewpoints, indicating
potential areas for enhancement in the evaluation protocol.
Specifically, in the case of ObjNav, the same issue was also
highlighted in [5].

4. LLM Prompts.

TANGO utilizes LLMs to parse input prompts and gener-
ate synthetic pseudocode for task completion. As described
in the conclusions section, the LLM is provided with 15
in-context examples spanning various tasks and is tasked
with independently composing the appropriate primitives to
solve the given task. The example programs range from
simple object-goal navigation (e.g. “I’ve lost my laptop,
where is it?”) to multiple EQA question-program pairs (e.g.
“Can you tell me if I left the TV on?”), with the latter be-
ing the most challenging to accurately transform into pseu-
docode, as illustrated in Section 5. The rationale for includ-
ing diverse tasks is to encourage the LLM to generalize ef-
fectively and learn correct module compositions for specific
problems. Therefore, it is the LLM’s job to understand the
current prompt and generate correct pseudocode to tackle
the related task. In particular, in the case it is fed an image
as input, it has to first extract the semantic object it repre-
sents. Figure 4 illustrates the initial prompt structure, in-
cluding example-program pairs. Moreover, instructing the
LLM to comment on its own code enhances explainability,
which is particularly useful when the model outputs incor-
rect targets for the task, resulting in a failure.

Figure 5 illustrates an example of TANGO successfully
transforming a target description into a sequence of ordered
subtasks.

Figure 4. Initial prompt. Initial prompt fed to the LLM to gener-
ate the new pseudo-code used in navigation.

Figure 5. GOAT subtask example. The target is gas boiler and
the agent has to follow the set of primitives generated by the LLM.
Moreover, the comments on the code helps understand the LLM’s
thought process.

5. Dynamic Program Updating
We want to emphasize that continuously updating the pro-
gram at each step—by feeding the LLM the current obser-
vation along with a history of what it has seen and the cur-
rent program state—could greatly enhance the system by
enabling dynamic adjustments as needed. However, this ap-
proach is quite expensive since it requires making an API
call to the model at each step. A possible direction is to
minimize the number of tokens fed to the LLM during this
process. This potential direction for future work would ne-
cessitate rethinking the memory mechanism so that it can
be queried directly by the LLM during its decision-making
process. In other words, the module would need to be rede-
fined based on the information provided by memory when
the LLM ”thinks” about the next possible step. This integra-
tion of memory and LLM reasoning could be a promising
avenue for combining the strengths of semantic navigation
with advanced language-based reasoning.

References
[1] Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee,

Devi Parikh, and Dhruv Batra. Embodied question answering.
In Proc. of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2018. 1, 2

[2] Abhishek Das, Georgia Gkioxari, Stefan Lee, Devi Parikh,
and Dhruv Batra. Neural modular control for embodied ques-
tion answering. In Proc. of the International Conference on
Robot Learning (CoRL), 2018. 1, 2

[3] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-
2: Bootstrapping language-image pre-training with frozen im-
age encoders and large language models. In International
conference on machine learning, pages 19730–19742. PMLR,
2023. 1

[4] Arjun Majumdar, Anurag Ajay, Xiaohan Zhang, Pranav Putta,
Sriram Yenamandra, Mikael Henaff, Sneha Silwal, Paul Mc-
vay, Oleksandr Maksymets, Sergio Arnaud, et al. Openeqa:
Embodied question answering in the era of foundation mod-
els. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 16488–16498, 2024. 1

[5] Sonia Raychaudhuri, Tommaso Campari, Unnat Jain, Manolis
Savva, and Angel X Chang. Mopa: Modular object naviga-
tion with pointgoal agents. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pages
5763–5773, 2024. 4

[6] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016. 1

[7] Saim Wani, Shivansh Patel, Unnat Jain, Angel Chang, and
Manolis Savva. Multion: Benchmarking semantic map mem-
ory using multi-object navigation. Advances in Neural Infor-
mation Processing Systems, 33:9700–9712, 2020. 1, 2, 3

[8] Naoki Yokoyama, Sehoon Ha, Dhruv Batra, Jiuguang Wang,
and Bernadette Bucher. Vlfm: Vision-language frontier maps
for zero-shot semantic navigation. In 2024 IEEE International
Conference on Robotics and Automation (ICRA), pages 42–
48. IEEE, 2024. 1, 2

	. Additional Experiments
	. Embodied Question Answering
	EQA Datasets Comparison

	. Multi ObjectGoal Navigation

	. Exploration Policy using Memory targets
	. Ablation Studies
	Object Detector

	. Failure analysis
	. LLM Prompts.
	. Dynamic Program Updating

