Apollo: An Exploration of Video Understanding in Large Multimodal Models
Appendix

Future work

Several promising directions emerge from our study on Large Multimodal Models (LMMs). First, we employed a fully
unified architecture, using the video encoder for videos and images by replicating each image N times. Exploring separated
architectures, where images are processed with an image encoder and videos with both image and video encoders, could
allow for the unfreezing of the encoders during supervised fine-tuning.

Second, in separated architectures, training the video and image encoders during supervised fine-tuning (SFT) and evaluat-
ing their individual contributions to performance could identify optimal training strategies. Similarly, training both encoders
on mixed image and video data within unified architectures may help determine which encoder influences observed perfor-
mance drops, enabling targeted improvements.

Further investigation into Scaling Consistency is necessary to confirm its applicability across a broader range of model
sizes, ensuring its reliability for even larger models. We did not explore memory-based LMM approaches, such as memory
banks or frame retrieval methods like text-conditioned pooling in Q-Former. Evaluating these techniques could test our
hypothesis that these techniques might struggle to generalize to multi-turn conversations.

Lastly, current benchmarks primarily use academic multiple-choice formats, which inadequately assess conversational
abilities. Developing a dedicated conversational evaluation benchmark for LMMs is essential to more accurately measure
and enhance the dialogue performance of models in real-world scenarios.

Appendix overview

This document provides more details of our approach and additional experimental results, organized as follows:

* § A Analyzing the benchmarks. We provide an in-depth analysis of the different factors affecting evaluations such as
video duration and format. We then give a detailed overview of how we curated ApolloBench.

* § B Apollo implementation details. We provide in-depth description of Apollo, along with all the hyperparameters needed
to reproduce Apollo.

* § C Scaling Consistency. We provide an in-depth analysis of the correlations between models of different sizes, compare
Scaling Consistency to traditional scaling laws, and highlight their utility in future research.

* § D Video sampling analysis. We expand on our Video Sampling experiments and add a per-metric breakdown.

* § E Raw results. We provide all the raw data used in our study for further analysis. For Sec. 4: Tab. 12 & 13, Sec. 5.1:
Tab. 9 & 10, Sec. 5.2: Tab 8, Sec. 5.4: Tab. 4, Sec. 6.3: Tab. 11.
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Figure 7. Apollo architecture overview. Apollo encodes clips of N (dependent on the video encoder) frames. Output features are
interpolated and concatenated along the channel dimension before being fed to a connector. The connector up-projects the features to the
Large Language Models’ hidden dimension and then resamples them into a pre-set number of T tokens/clip. Images are duplicated N times
and encoded the same way as video clips.

A. Analyzing the benchmarks

A.l. Correlations within existing benchmarks

Video duration. We were interested in how the video length affected model performance to see if existing benchmarks test
long video perception capabilities. In the large language model field, testing long-context has been non-trivial, where many
benchmarks do not need information integration across the entire model’s context window and instead resemble needle-
in-a-haystack experiments. We hypothesized that long video benchmarks may behave similarly. As such, we compared
Video-MME short/medium/long and LongVideoBench’s different duration groups (see Fig. 10 and Fig. 11). We found that
the two are highly correlated, where R? > 0.92 between all duration groups in LongVideoBench (Fig. 11). On Video-MME,
whether using or not using subtitles, R? > 0.83. When closely examining Video-MME short/medium/long in Fig. 2, one
can see that the biggest difference between them is the performance in the video modality decreases, with text and image
modalities being mostly unchanged. This indicates an increasing reliance on the text model’s performance rather than any
vision capabilities.

Question types. There are currently two prevalent methods for evaluating LMMs—either open-ended questions or close-
ended (multiple choice, yes/no). Scoring open-ended QA is hard because the score is ultimately subjective. The dominant
way of evaluating open-ended QA is using another language model (e.g., chatGPT) to rate the prediction and decide if it
is correct. As shown by Wu [45], GPT versioning strongly impacts the resulting scores that are even 10% apart. As such,
recent trends show greater reliance on multiple-choice QA. However, are we losing something when evaluating methods
only on multiple-choice? As seen in Fig. 9, we find these are highly correlated, with R? > 0.81. While multiple-choice
appears to be a good option for benchmarking the video perception capabilities of video-LMMs, models overly optimized to
multiple-choice will not be good conversational agents. As such, a benchmark focusing solely on a conversation is needed,
ideally, one that does not suffer from high API costs and GPT versioning noise.

A.2. Raw evaluations

We evaluated InvernVL2 2B & 8 B [6], LLaVA LLaVA-OV 0.5B & 7B [18], VILA-1.5 1.5 3B & 8B [24], Qwen2-VL 2B
& 7B [40], LongVA 7B [59] and XComposer-8B [57] on NEXxTQA [46], PerceptionTest [32], TempCompass [26], Video-
MME [9], MLVU [64], and LongVideoBench [44]. All evaluations were done using LMMs-eval [56]. Full evaluations of all
models on the benchmarks can be seen in Tab. 5 & 6.



ApolloBench

Format OCR Egocentric Spatial Perception Reasoning Overall
<vid_token> 50.4 58.5 54.8 58.8 554 55.5
<vid_start><vid_token><vid_end> 49.2 61.7 54.8 60.2 57.9 56.7
clip from {MM:SS}-{MM:SS}: <vid_token> 50.0 61.7 54.0 60.8 57.9 56.8
clip from {MM:SS}-{MM:SS}:

<vid_start><vid_token><vid_end> 50.0 61.2 54.2 55.7 60.6 56.2

Table 4. Comparison of Video Token Integration Methods. Performance of different strategies for integrating video tokens into the text
sequence. Incorporating textual timestamps before each clip yields the best overall performance.

A.3. ApolloBench curation

The creation process of ApolloBench is depicted in Fig. 8. The process begins with a collection of multiple-choice bench-
marks. To eliminate the reliance on external tools like ChatGPT, we focus exclusively on multiple-choice questions, ensuring
a cost-effective and consistent evaluation process [45].

We first evaluated several Large Multimodal Models (LMMs) with text-only, center-frame, and full-video inputs. Ques-
tions that could be answered correctly by more than 50% of the models using either of these modalities were filtered out,
as these questions did not require video perception. Next, we categorized the remaining questions into five temporal per-
ception categories: Temporal OCR, Egocentric, Spatial, Perception, and Reasoning. Using entropy, we identified questions
with high discrimination power between models and manually verified them to ensure accuracy and quality. From this, we
selected the top 400 questions with the highest entropy to form the final ApolloBench dataset. This curated benchmark is

NExT-QA Perception-Test TempCompass (CM) TempCompass (MC) TempCompass (YN)
Model Video Image Text Video Image Text Video Image Text Video Image Text Video Image Text
InternVL2 2B [6] 68.9 61.1 428 496 460 386 672 633 519 534 475 359 623 593 512
InternVL2 8B [6] 70.8 726 49.1 574 528 413 774 669 583 653 549 437 68.6 62.6  52.1

LLaVA-OV 0.5B [18] 57.3 50.7 319 49.1 448 404 619 589 513 532 446 341 60.0 55.9 497
LLaVA-OV 7B [18] 79.3 700 48.7 57.1 49.7 414 738 60.8 56.8 649 516 414 698 57.8 533
LongVA 7B [59] 50.2 389 36.6 506 503 50.1 60.7 5.1 509 56.1 522 50.7 629 61.6  60.9
Qwen2-VL 2B [40] 68.7 62.1 440 53.1 475 398 709 625 543  60.6 504 40.1 637 58.6 523
Qwen2-VL 7B [40] 78.9 68.5 426 589 526 384 76.6 643 565 672 523 416 719 61.8 54.0
VILA-1.5 3B [24] 56.9 56.7 30.1 49.1 49.1 362 663 663 529 56.1 56.1 368 634 634 51.1
VILA-1.5 8B [24] 63.1 63.1 382 547 547 412 587 587 33.6 490 49.0 188 625 62.5 50.6
XComposer-8B [57] 71.1 473 41.0 559 453 396 722 593 492 611 394 317 645 57.8 523

Table 5. Benchmark evaluation for different models across input modalities (1/2). This table reports the performance of various models
on the NExT-QA, Perception-Test, and TempCompass benchmarks with video, image, and text inputs.

LongVideoBench MLVU Video-MME (Long) Video-MME (Medium) Video-MME (Short)
Model Video Image Text Video Image Text Video Image Text Video Image Text Video Image Text
InternVL2 2B [6] 44.8 379 328 482 415 32,6 331 309 314 382 322 287 513 39.1 328
InternVL2 8B [6] 51.8 450 402 50.8 40.0 37,5 420 400 38.6 50.6 396 386 621 482 394

LLaVA-OV 0.5B [18]  46.0 40.5 374 503 392 353 372 313 331 400 320 302 546 37.1  30.1
LLaVA-OV 7B [18] 56.5 45.1 412 651 503 455 499 369 398 546 394 383 709 474 402
LongVA 7B [59] 452 442 430 519 45.1 441 414 38.1 367 459 399 384 551 453  40.0
Qwen2-VL 2B [40] 48.5 40.8 404 595 45.1 384 432 369 333 510 350 323 653 404 348
Qwen2-VL 7B [40] 54.8 447 415 655 49.1 424 498 400 384 576 412 392 707 463  37.6
VILA-1.5 3B [24] 42.9 429 338 233 233 136 316 280 280 36.7 27.3 273 487 27.8 278
VILA-1.5 8B [24] 472 472 371 444 444 311 393 366 36.6 421 32.3 323 563 343 343
XComposer-8B [57] 47.6 300 320 372 8.5 73 464 2800 351 509 26.3 350  66.0 28.1  36.1

Table 6. Benchmark evaluation for different models across input modalities (2/2). This table reports the performance of various models
on the LongVideoBench, MLVU, and Video-MME benchmarks with video, image, and text inputs.
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Figure 8. Flowchart illustrating the curation process of ApolloBench. Starting with a collection of benchmarks, we evaluate Large
Multimodal Models (LMMs) using the full video, single-frame, and text inputs. Questions requiring video perception were filtered based
on model performance, and discretionary questions were identified using entropy. After manual verification and categorization into five
temporal perception categories, the top 400 questions were selected for the benchmark, and manually inspected.
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Figure 9. Effect of question type on model performance. Correlations between different question types (multiple-choice, yes/no) on the

TempCompass benchmark are shown. The high correlation indicates consistency in evaluating model performance across various question

formats, indicating that multiple choice is a reasonable option in existing benchmarks.

41x faster to evaluate compared to existing benchmarks while maintaining a high correlation with their results (see Fig. 2,
right). Additionally, ApolloBench emphasizes video perception, as shown in Fig. 2, left.

B. Apollo implementation details

In this section, we provide detailed descriptions of all the design decisions in Apollo, including implementation specifics,
hyperparameters, and other relevant details.



80 A @ wosubs == y=112x+-2012, B2 091 @ . @ wosubs == y=097x+-1549, R%:083 @ . @ wosbs == y=086x+298 k%088 9
@ wsubs — = y=142x+-4093, R 089 #7 75 1 ® wsubs —— y=154x+-55.15 R% 088 7 75 ® wsubs — = y=1.07x+-9.64, R?: 097~
4 A

™ o9 70 1 . 70 1 5
=3 () ) -
£ 704 o 2 g 65 e 8 65 o
> L) i s 00 3 65 -
= S0 0 > L > ’“/’ °
S 65 - e | o -® e on P r‘
3 e £ 60+ G .7 /" £ 60 ® /’/.
g ® - 8700 3 e /‘:., 3 P ’:,

5 [}

60 e '.Q 55 ° 2 ° 55 )

° ,/"/ o °
55 o. d 50 - e 504 g8
o s o & &
- e ®
50 T T T T T T T T T T T T T T T T
65 70 75 80 85 65 70 75 80 85 55 60 65 70 75 80
Short Video Short Video Medium Video

Figure 10. Correlation between Video-MME duration groups. The correlations between short, medium, and long video duration groups
on the Video-MME benchmark. The analysis highlights how model performance scales with video length, emphasizing the reliance on
text and image modalities as video duration increases.
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Figure 11. Correlation between LongVideoBench duration groups. Correlations between different video duration categories on
LongVideoBench are depicted, with R? > 0.92 across groups. This consistency suggests that performance trends remain stable across

varying video lengths.

B.1. Architecture

Apollo encodes clips consisting of N frames, where /N depends on the video encoder used (= 4 for InternVideo2+SigLIP-
SO400M). We opted for a fully shared pipeline for both images and videos, so when encoding images, we replicate the
image IV times to match the clip length. The frames are then encoded independently with the InternVideo2 and SigLIP-
SO400M encoders. The output features are interpolated and concatenated along the channel dimension before being fed
into a connector module. The connector projects the features to match the hidden dimension of the Large Language Model,
and the resampler resamples them into a predetermined number of 7' tokens per clip using the Perceiver Resampler. An
overview of Apollo is shown in Fig. 7. For vision-text token integration, we utilize the c1ip from {MM:SS}-{MM:SS}:
<vid_token> token integration strategy.

Apollo effectively samples videos as a series of independent clips. By keeping the clip sampling frames per second (fps)
constant, the model learns to reason about fine-grained temporal aspects, such as the speed of objects. Many previous methods
employ uniform frame sampling, especially when handling long videos, effectively changing the “playback speed” between
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Figure 12. Data statistics of the fine-tuning dataset. (Left) Breakdown of data modalities, including text, image, multi-image, and video,
illustrating the composition of the fine-tuning dataset. (Middle) Distribution of video annotation types, highlighting the proportions of
Conversational, Reasoning, Egocentric, Temporal Perception, Text Recognition, and Captioning annotations. (Right) Histogram of video
durations, showing the frequency distribution of video lengths in seconds.

iterations. In contrast, we sample clips uniformly spaced throughout the video, and if the video is too long, we distribute
the individual clips uniformly rather than adjusting the frame sampling rate. We, therefore, sample clips concurrently until
reaching the maximum number of clips (see Tab. 7), at which point we start uniformly distancing the clips.

B.2. Data

We utilized a diverse mix of publicly available and licensed datasets across text, image-text, multi-image, and video modali-

ties. Due to licensing restrictions, we excluded non-permissive datasets—such as those leveraging ChatGPT—which limited

our inclusion of some commonly used datasets. We generated multi-turn conversations to enrich our training data by leverag-

ing Large Multimodal Models (LMMs), such as Qwen2VL-7B, for captioning. Then, we used LLaMA 3.1 70B [39] to con-

vert these captions into conversations. Detailed data statistics are presented in Fig. 6. It is possible that performance could be

further improved without such restrictions and by training on larger datasets like those introduced in LLaVA-OneVision [ 18]

and Cambrianl [37]. Our training process comprised three distinct stages:

1. Alignment: In this phase, we trained on a 50/50 mixture of image and video captions, totaling 198K samples.

2. Vision Pretraining: We tuned the encoders using a video-only caption dataset of 396K samples.

3. Supervised Fine-tuning (SFT): We trained on a mixture of text, image, multi-image, and video data, with a total of 3.2
million samples.

B.3. Training

We trained our models using 128 NVIDIA A100 GPUs. Due to the large-scale nature of this study, we automated model
training to be spawned from csv files, which would automatically update with the final evaluations. Most experiments were
done with ZeRO2 optimization, as full model sharding was unnecessary for our models, but ZeRO3 optimization is supported
for researchers interested in training larger models. We utilized the AdamW optimizer for all training stages with a gradient
clipping threshold of 1. We applied a warm-up ratio of 0.03 and a cosine learning rate schedule. The training objective was
the cross-entropy loss for autoregressive text generation only. We adjusted the learning rates of the Large Language Model
(LLM) components proportionally to the square root of their relative model sizes. We found that employing a higher learning
rate for the connector module yielded the best performance.

C. Scaling Consistency: efficient model design with smaller models

Developing Large Multimodal Models (LMMs) with billions of parameters is computationally intensive. A key question
is whether smaller models can reliably inform design decisions for larger ones. We introduce Scaling Consistency, a phe-
nomenon where design choices evaluated on moderately sized models (approximately 2—4 billion parameters) correlate highly
with those on larger models, enabling efficient model development.

To investigate Scaling Consistency, we conducted extensive experiments varying key aspects of LMM design, such as
architecture, video sampling, training strategies, and data mixtures. We selected 21 model variations exploring different



‘ Align ‘ Vision Pretraining ‘ SFT

| 1.5B 3B 7B | 15B 3B 7B | 15B 3B 7B
. Maxclips 25 25 25 25 25 25 200 200 150
£ fps 2 2 2 2 2 2 2 2 2
g tps 32 32 32 32 32 32 32 32 32
S tpf 16 16 16 16 16 16 16 16 16
. Dataset A A A VpT VpT VpT SFT SFT SFT
3 #Samples 198K 198K 198K 396K 396K 396K 3.2M 3.2M 3.2M
Type +Vv +Vv 1+Vv \Y \'% \% T++MI+V  T++MI+V  T+I+MI+V
Trainable 38.4M  63.6M  17TM 1.4B 1.5B 1.6B 1.6B 3.2B 7.8B
E wvision - - - 1.4B 1.4B 1.4B — — —
s Bconnector 384M  63.6M  17TM 38.4M 63.6M 177T™M 38.4M 63.6M 177M
LM - - - - - - 1.54B 3.09B 7.62B
Batch Size 256 256 256 256 256 256 256 256 256
2 LR: Vyision 0 0 0 5x107% 5x107% 5x1076 0 0 0
£ LR:0comnector | 1x107*  1x107*  1x107* | 1 x107* 1 x10~* 1x107* | 1x10~* 1 x10~* 1 x10~%
& LR: ¢um 0 0 0 0 0 0 5x107° 2 x107° 1 x107°
Epoch 1 1 1 1 1 1 1 1 1

Table 7. Detailed configuration for each training stage of Apollo. The table summarizes the maximum clips per video, frames per
second (fps), dataset information, trainable parameters, and training hyperparameters across different stages of training (Alignment, Vision
pretraining, SFT) for Apollo models of varying sizes (1.5B, 3B, and 7.6B).

design dimensions. Each variation was trained using four different Large Language Models (LLMs): Qwen2-0.5B, Qwen2-
1.5B, Qwen1.5-4B, and Qwen2-7B, resulting in a total of 84 models.

Unlike traditional scaling laws—which typically require training multiple models from within the same model family
to understand how performance scales with size—Scaling Consistency allows us to transfer design insights without such
extensive efforts. In scaling laws, researchers train around 3-5 models of different sizes to establish scaling relationships,
and only then can they determine which design decisions are beneficial at larger scales. In contrast, Scaling Consistency
shows that design decisions on moderately sized models transfer well to larger ones, even across different model families.
Our primary goal is to show that design decisions transfer reliably, reducing computational burden and accelerating research.

In Fig. 13, we present all the correlation plots from our study. When comparing the 7B model to smaller ones (first row),
we observe that the R? correlation progressively increases with model size. A similar pattern is seen when comparing the
4B model to smaller models. For the 1.5B model, however, the R? decreases when compared to larger models, and with the
0.5B model, the R? is essentially random. We find that the R? behaves log-linearly with model size. This suggests that at
approximately 3 billion parameters, we expect an R? correlation greater than 0.9 when compared with the 7B model. Since
the behavior is log-linear; models above the 3—4 billion parameter range can be expected to have high correlation even with
much larger models, such as 32B (> R? ~ 0.86) or 72B parameters (> R? ~ 0.84).

D. Effect of video sampling on the different dimensions of video perception

Fig. 14 presents a detailed analysis of how varying frames per second (fps) and tokens per second (tps) impact our model’s
performance across different video perception tasks: Optical Character Recognition (OCR), Spatial Understanding, Ego-
centric Understanding, Perception, and Reasoning. Our findings indicate that OCR and Spatial Understanding tasks show
consistent performance decline with fewer tokens per frame when tps is reduced, particularly noticeable at lower values of
2-4 tps, regardless of fps settings. This suggests that these tasks are highly sensitive to the amount of visual information
encoded per frame, significantly affecting performance by the number of tokens per frame.

In contrast, Egocentric Understanding and Reasoning tasks show a less severe performance drop when tps is reduced,
especially at lower fps values. This implies that these tasks are less sensitive to the number of tokens per frame and are more
influenced by the temporal resolution provided by fps, with the ability to capture temporal dynamics being more critical than
the density of visual information per frame. The Perception metric behaves as an outlier; apart from an anomalous data point
at 1 fps, perception performance tends to favor lower fps values and is less affected by variations in tps. This indicates that
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Figure 13. Scaling Consistency. Average accuracy for each one for each design variation, we can tell model’s correlation gets pro-
gressively better. When comparing two small models (1.5B and 0.5B), we do not see a good correlation, confirming that the Scaling
Consistency is not due to the models being of similar size but larger than a certain size.

for specific perceptual tasks, increased temporal sampling does not always improve performance, and effective performance
can be achieved with fewer frames and tokens.
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Figure 14. Video fps sampling analysis. Full analysis on the effect of frames per second (fps, x-axis), tokens per second (tps, y-axis), and
tokens per frame (tpf, dotted red lines) on each of ApolloBench’s dimensions. The number of tokens/frames is highlighted via the dotted
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Hyperparameters ApolloBench
LLM Vision Encoders OCR Spatial Egocentric Perception Reasoning Overall
1 Qwen2.5-3B-Instruct DINOv2 36.6 40.5 55.9 48.0 46.3 45.5
2 Qwen2.5-3B-Instruct LanguageBind-Image 41.2 46.2 49.5 51.0 51.7 47.9
3 Qwen2.5-3B-Instruct ~ SigLIP SO400M 41.9 522 57.4 52.0 60.0 52.7
4 Qwen2.5-3B-Instruct  VideoMAE 35.6 355 47.9 47.0 40.0 412
5  Qwen2.5-3B-Instruct  V-JEPA 39.4 352 44.1 52.0 44.6 43.1
6  Qwen2.5-3B-Instruct LanguageBind-Video 41.2 47.8 54.8 53.2 46.3 48.7
7 Qwen2.5-3B-Instruct  InternVideo2 437 46.5 56.4 55.2 58.1 52.0
8  Qwen2.5-3B-Instruct  VideoMAE + DINOv2 40.1 432 57.4 59.5 47.5 49.6
9  Qwen2.5-3B-Instruct  VideoMAE + LanguageBind-Image 39.8 49.8 55.9 57.5 49.8 50.5
10 Qwen2.5-3B-Instruct  VideoMAE + SigLIP SO400M 45.8 54.8 55.9 63.0 55.6 55.0
11 Qwen2.5-3B-Instruct  V-JEPA + DINOv2 41.5 43.2 56.4 55.2 48.5 49.0
12 Qwen2.5-3B-Instruct  V-JEPA + LanguageBind-Image 433 49.2 50.5 59.2 529 51.1
13 Qwen2.5-3B-Instruct  V-JEPA + SigLIP SO400M 48.6 532 59.0 57.8 58.1 55.3
14 Qwen2.5-3B-Instruct LanguageBind-Video + DINOv2 41.5 449 54.6 57.6 51.0 50.0
15 Qwen2.5-3B-Instruct LanguageBind-Video + LanguageBind-Image 41.2 48.5 532 62.7 54.7 52.1
16 Qwen2.5-3B-Instruct LanguageBind-Video + SigLIP SO400M 45.4 50.5 59.6 56.8 549 534
17 Qwen2.5-3B-Instruct  InternVideo2 + DINOv2 43.0 48.2 50.0 58.0 57.1 51.3
18 Qwen2.5-3B-Instruct InternVideo2 + LanguageBind-Image 45.8 48.0 51.6 62.3 56.9 52.9
19 Qwen2.5-3B-Instruct  InternVideo2 + SigLIP SO400M 46.8 55.0 60.1 63.2 64.5 57.9

Table 8. Raw results for vision encoders experiment. The table presents performance scores on ApolloBench at a tokens-per-second
(TPS) rate of 32. Metrics include OCR, spatial understanding, egocentric reasoning, perception, reasoning, and overall performance. The
encoders are grouped and ordered as follows: single image encoders, single video encoders, and dual encoder configurations.

E. Raw results

We provide the raw evaluations of all the models utilized in our study. Many investigations required multiple experiments to
test whether design decisions hold under multiple design decisions. We provide all the raw data used in our study for further
analysis. For Sec. 4: Tab. 12 & 13, Sec. 5.1: Tab. 9 & 10, Sec. 5.2: Tab 8, Sec. 5.4: Tab. 4, Sec. 6.3: Tab. 11.



Hyperparameters ApolloBench
LLM Vision Encoders tps fps tpf  OCR Spatial Egocentric Perception Reasoning | ENEHN
1 Qwen2.5-3B-Instruct  InternVideo2-1B + SigLIP SO400M 512.0 4.0 128.0 46.0 51.0 52.1 59.0 54.0
2 Qwen2.5-3B-Instruct InternVideo2-1B + SigLIP SO400M 256.0 2.0 128.0 455 53.5 51.5 59.0 49.0
3 Qwen2.5-3B-Instruct  InternVideo2-1B + SigLIP SO400M 128.0 1.0 128.0 51.0 55.0 55.3 51.0 62.5
4 Qwen2.5-3B-Instruct  InternVideo2-1B + SigLIP SO400M  64.0 0.5 128.0 48.0 52.0 54.2 63.0 56.0
5 Qwen2.5-3B-Instruct  InternVideo2-1B + SigLIP SO400M  256.0 4.0 64.0 43.5 50.0 55.3 62.0 56.0
6  Qwen2.5-3B-Instruct InternVideo2-1B + SigLIP SO400M 128.0 2.0 640 51.0 52.0 61.6 58.0 59.5
7 Qwen2.5-3B-Instruct  InternVideo2-1B + SigLIP SO400M  64.0 1.0 64.0 525 55.0 60.6 58.5 57.0
8 Qwen2.5-3B-Instruct  InternVideo2-1B + SigLIP SO400M  32.0 0.5 64.0 475 56.5 60.0 58.0 60.0
9 Qwen2.5-3B-Instruct  InternVideo2-1B + SigLIP SO400M 128.0 4.0 32.0 520 57.5 60.6 61.0 57.5
10 Qwen2.5-3B-Instruct  InternVideo2-1B + SigLIP SO400M  64.0 2.0 32.0 550 58.0 60.6 55.5 62.5
11 Qwen2.5-3B-Instruct  InternVideo2-1B + SigLIP SO400M  32.0 1.0 320 525 54.5 62.7 51.0 63.0
12 Qwen2.5-3B-Instruct  InternVideo2-1B + SigLIP SO400M  16.0 0.5 32.0 50.0 56.0 58.4 63.0 58.0
13 Qwen2.5-3B-Instruct  InternVideo2-1B + SigLIP SO400M  64.0 4.0 160 495 60.5 58.4 60.0 62.5
14 Qwen2.5-3B-Instruct  InternVideo2-1B + SigLIP SO400M  32.0 20 160 53.0 56.0 53.1 56.0 59.5
15 Qwen2.5-3B-Instruct  InternVideo2-1B + SigLIP SO400M  16.0 1.0 160 545 58.5 55.3 61.0 61.0
16  Qwen2.5-3B-Instruct  InternVideo2-1B + SigL.IP SO400M 80 05 160 50.0 50.5 61.1 59.5 55.5
17 Qwen2.5-3B-Instruct  InternVideo2-1B + SigLIP SO400M  32.0 4.0 8.0 55.5 59.5 59.0 57.5 61.5
18  Qwen2.5-3B-Instruct  InternVideo2-1B + SigLIP SO400M  16.0 2.0 8.0 45.5 55.5 60.0 66.0 62.5
19  Qwen2.5-3B-Instruct  InternVideo2-1B + SigL.IP SO400M 8.0 1.0 8.0 54.5 55.0 62.7 59.0 58.0
20  Qwen2.5-3B-Instruct  InternVideo2-1B + SigLIP SO400M 4.0 0.5 8.0 50.5 56.0 57.4 61.5 60.0
21 Qwen2.5-3B-Instruct  InternVideo2-1B + SigLIP SO400M  16.0 4.0 4.0 29.5 25.0 1.0 38.5 12.5
22 Qwen2.5-3B-Instruct  InternVideo2-1B + SigL.IP SO400M 80 2.0 40 35.0 40.5 48.9 52.0 40.0
23 Qwen2.5-3B-Instruct  InternVideo2-1B + SigLIP SO400M 4.0 1.0 4.0 41.5 43.5 52.1 63.0 51.5
24 Qwen2.5-3B-Instruct  InternVideo2-1B + SigLIP SO400M 20 05 4.0 39.5 47.0 61.6 55.0 50.0
25 Qwen2.5-3B-Instruct  InternVideo2-1B + SigLIP SO400M 8.0 4.0 2.0 38.5 36.5 54.2 47.5 445
26 Qwen2.5-3B-Instruct  InternVideo2-1B + SigLIP SO400M 4.0 2.0 2.0 26.5 23.5 30.8 44.9 27.5
27  Qwen2.5-3B-Instruct  InternVideo2-1B + SigLIP SO400M 2.0 1.0 2.0 37.3 41.8 53.1 50.3 459
28  Qwen2.5-3B-Instruct  InternVideo2-1B + SigLIP SO400M 1.0 05 2.0 41.0 42.0 54.2 45.0 48.2

Table 9. Raw results of video sampling experiment. ApolloBench breaks down metrics to OCR, spatial understanding, egocentric
reasoning, perception, reasoning, and overall performance. The table highlights the impact of frames per second (fps), tokens per second

(tps), and tokens per frame (tpf).

Hyperparameters ApolloBench
- Uniform Frames . . . .
Nixrarall
LLM Vision Encoders (Train)  (Test) OCR Spatial Egocentric Perception Reasoning
1 Qwen2.5-3B-Instruct  InternVideo2-1B + SigLIP SO400M 8 8 38.0 41.0 43.1 50.3 44.0 44.2
2 Qwen2.5-3B-Instruct  InternVideo2-1B + SigLIP SO400M 16 16 40.5 46.7 559 55.3 46.1 48.1
3 Qwen2.5-3B-Instruct  InternVideo2-1B + SigLIP SO400M 32 32 49.5 52.0 51.1 58.5 48.5 51.9
4  Qwen2.5-3B-Instruct  InternVideo2-1B + SigLIP SO400M 64 64 46.5 52.0 61.2 56.5 59.5 55.1
5  Qwen2.5-3B-Instruct  InternVideo2-1B + SigLIP SO400M 8 No 425 445 54.8 52.0 51.5 49.0
6 Qwen2.5-3B-Instruct  InternVideo2-1B + SigLIP SO400M 16 No 48.0 43.5 58.5 60.5 53.0 52.6
7 Qwen2.5-3B-Instruct  InternVideo2-1B + SigLIP SO400M 32 No 46.0  50.0 52.1 57.5 57.5 52.6
8 Qwen2.5-3B-Instruct InternVideo2-1B + SigLIP SO400M 64 No 48.5 535 59.0 54.5 54.0 53.8

Table 10. Raw results of uniform sampling experiment. ApolloBench evaluates metrics including OCR, spatial understanding, egocen-
tric reasoning, perception, reasoning, and overall performance. Top half are results when models are both trained and tested with uniform

frame sampling. The bottom half is when the models are trained with uniform frame sampling but tested at an fps of 2.



Data Compisiton ApolloBench

Text Image Multi-Image Video OCR Spatial Egocentric Perception Reasoning Overall

1 25.0 25.0 25.0 25.0 41.0 49.5 59.0 57.0 59.5 53.1
2 15.0 25.0 20.0 40.0 47.5 59.0 60.6 66.0 62.0 59.0
3 15.0 325 20.0 325 45.0 57.0 52.1 60.0 61.5 552
4 15.0 40.0 20.0 25.0 46.5 52.0 58.0 65.5 63.5 57.1
5 7.0 38.7 20.0 343 44.5 53.0 54.3 58.0 55.5 53.0
6 7.0 55.0 20.0 18.0 45.5 51.0 52.7 62.0 60.0 543
7 7.0 0.0 0.0 93.0 37.5 335 52.7 40.5 45.5 41.8
8 7.0 0.0 20.0 73.0 37.0 44.0 51.1 45.0 49.0 45.1
9 5.0 20.0 20.0 55.0 51.0 56.0 53.7 60.5 62.5 572
10 5.0 10.0 40.0 45.0 37.0 44.5 50.5 54.0 48.5 46.9
11 2.0 30.0 30.0 38.0 30.5 43.0 50.0 51.0 44.5 43.7
12 0.0 38.7 20.0 413 33.0 41.0 48.9 50.5 46.0 43.8

Table 11. Raw results of data composition experiments. Performance outcomes of video-based Large Multimodal Models (LMMs)
trained with varying proportions of Text, Image, Multi-Image, and Video data mixtures. The table presents benchmark scores across OCR,
Spatial, Egocentric, Perception, Reasoning, and Overall performance metrics for each distinct data composition. These results emphasize
the critical role of balanced data mixtures in optimizing model performance (see Sec. 6.3 for details).



LLM Vision Towers Frese Dunation /Oy P P fame yiivare AV
1 Qwen2-7B-Instruct LanguageBind-Video-v1.5 + SigLIP SO400M 5 32 1.6 64 4 A 46.37
2 Qwen2-7B-Instruct LanguageBind-Video-v1.5 + SigLIP SO400M 5 64 1.6 128 8 A 46.46
3 Qwen2-7B-Instruct LanguageBind-Video-v1.5 + SigLIP SO400M (¢ 5 64 1.6 128 8 A 48.79
4 Qwen2-7B-Instruct VJEPA-H@384 + SigLIP SO400M 5 32 32 64 2 A 47.22
5 Qwen2-7B-Instruct VJEPA-H@384 + SigLIP SO400M 10 64 1.6 64 4 A 43.46
6 Qwen2-7B-Instruct VJEPA-H@384 + SigLIP SO400M 5 64 32 128 2 A 46.47
7 Qwen2-7B-Instruct VJEPA-H@384 + SigLIP SO400M (¢ 5 64 32 128 2 A 42.11
8  Qwen2-7B-Instruct LanguageBind-Video-v1.5 + SigLIP SO400M 5 32 1.6 64 4 B 49.75
9  Qwen2-7B-Instruct LanguageBind-Video-v1.5 + SigLIP SO400M 5 64 1.6 128 8 B 50.61
10  Qwen2-7B-Instruct LanguageBind-Video-v1.5 + SigLIP SO400M (¢ 5 64 1.6 128 8 B 50.91
11 Qwen2-7B-Instruct VJEPA-H@384 + SigLIP SO400M 5 32 32 64 2 B 49.44
12 Qwen2-7B-Instruct VJEPA-H@384 + SigLIP SO400M 10 64 1.6 64 4 B 50.14
13 Qwen2-7B-Instruct VJEPA-H@384 + SigLIP SO400M 5 64 32 128 2 B 51.08
14 Qwen2-7B-Instruct VIEPA-H@384 + SigLIP SO400M (¢ 5 64 32 1238 2 B 43.92
15 Qwen2-7B-Instruct LanguageBind-Video-v1.5 + SigLIP SO400M 5 32 1.6 64 4 C 51.80
16 Qwen2-7B-Instruct LanguageBind-Video-v1.5 + SigLIP SO400M 5 64 1.6 128 8 C 5291
17  Qwen2-7B-Instruct LanguageBind-Video-v1.5 + SigLIP SO400M (¢ 5 64 1.6 128 8 C 52.07
18 Qwen2-7B-Instruct VJEPA-H@384 + SigLIP SO400M 5 32 32 64 2 C 51.36
19 Qwen2-7B-Instruct VIEPA-H@384 + SigLIP SO400M 10 64 1.6 64 4 C 52.49
20 Qwen2-7B-Instruct VJEPA-H@384 + SigLIP SO400M 5 64 32 128 2 C 53.13
21  Qwen2-7B-Instruct VJEPA-H@384 + SigLIP SO400M (¢ 5 64 32 128 2 C 44.73
22 Qwenl.5-4B-Chat  LanguageBind-Video-v1.5 + SigLIP SO400M 5 32 1.6 64 4 A 42.67
23  Qwenl.5-4B-Chat  LanguageBind-Video-v1.5 + SigLIP SO400M 5 64 1.6 1238 8 A 42.92
24 Qwenl.5-4B-Chat  LanguageBind-Video-v1.5 + SigLIP SO400M (¢ 5 64 1.6 128 8 A 44.85
25 Qwenl.5-4B-Chat  VJEPA-H@384 + SigLIP SO400M 5 32 32 64 2 A 43.25
26 Qwenl.5-4B-Chat  VJEPA-H@384 + SigLIP SO400M 10 64 16 64 4 A 4191
27 Qwenl.5-4B-Chat  VJEPA-H@384 + SigLIP SO400M 5 64 32 1238 2 A 42.83
28 Qwenl.5-4B-Chat  VJEPA-H@384 + SigLIP SO400M (¢ 5 64 32 128 2 A 39.91
29 Qwenl.5-4B-Chat  LanguageBind-Video-v1.5 + SigLIP SO400M 5 32 1.6 64 4 B 45.90
30 Qwenl.5-4B-Chat  LanguageBind-Video-v1.5 + SigLIP SO400M 5 64 1.6 1238 8 B 46.75
31 Qwenl.5-4B-Chat  LanguageBind-Video-v1.5 + SigLIP SO400M (¢ 5 64 1.6 128 8 B 46.76
32 Qwenl.5-4B-Chat  VJEPA-H@384 + SigLIP SO400M 5 32 32 64 2 B 46.53
33 Qwenl.5-4B-Chat  VJEPA-H@384 + SigLIP SO400M 10 64 16 64 4 B 45.56
34  Qwenl.5-4B-Chat  VIEPA-H@384 + SigLIP SO400M 5 64 32 128 2 B 46.16
35 Qwenl.5-4B-Chat  VJEPA-H@384 + SigLIP SO400M (¢ 5 64 32 128 2 B 39.63
36 Qwenl.5-4B-Chat  LanguageBind-Video-v1.5 + SigLIP SO400M 5 32 1.6 64 4 C 48.34
37 Qwenl.5-4B-Chat  LanguageBind-Video-v1.5 + SigLIP SO400M 5 64 1.6 128 8 C 48.29
38 Qwenl.5-4B-Chat  LanguageBind-Video-v1.5 + SigLIP SO400M (¢ 5 64 1.6 1238 8 C 47.32
39 Qwenl.5-4B-Chat  VIEPA-H@384 + SigLIP SO400M 5 32 32 64 2 C 48.45
40 Qwenl.5-4B-Chat  VJEPA-H@384 + SigLIP SO400M 10 64 1.6 64 4 C 47.24
41 Qwenl.5-4B-Chat  VJEPA-H@384 + SigLIP SO400M 5 64 32 128 2 C 48.24
42  Qwenl.5-4B-Chat  VJEPA-H@384 + SigLIP SO400M (¢ 5 64 32 128 2 C 40.76

Table 12. Raw results of Scaling Consistency experiments (1/2). This table presents the raw performance data of 42 model configurations
used in the Scaling Consistency experiments. Each configuration explores the effect of various parameters, including the LLM size (Qwen
variants), vision tower configurations, freezing or training vision encoders, clip duration, tokens per clip, frames per second (fps), tokens
per second (tps), tokens per frame, and data mixture. The “Average” column reports the overall performance score. These results support
the investigation into how smaller models can serve as proxies for larger models in determining effective design decisions.



LLM Vision Tovers Frese Duration [Cip ™ 5 hrame Mtwre AVORES
43  Qwen2-1.5B-Instruct LanguageBind-Video-v1.5 + SigLIP SO400M 5 32 1.6 64 4 A 42.87
44  Qwen2-1.5B-Instruct LanguageBind-Video-v1.5 + SigLIP SO400M 5 64 1.6 128 8 A 42.94
45 Qwen2-1.5B-Instruct LanguageBind-Video-v1.5 + SigLIP SO400M ¢ 5 64 1.6 128 8 A 44.00
46  Qwen2-1.5B-Instruct VJEPA-H@384 + SigLIP SO400M 5 32 32 64 2 A 40.77
47 Qwen2-1.5B-Instruct VJEPA-H@384 + SigLIP SO400M 10 64 1.6 64 4 A 42.13
48 Qwen2-1.5B-Instruct VJEPA-H@384 + SigLIP SO400M 5 64 32 128 2 A 41.93
49  Qwen2-1.5B-Instruct VJEPA-H@384 + SigLIP SO400M & 5 64 32 128 2 A 40.18
50 Qwen2-1.5B-Instruct LanguageBind-Video-v1.5 + SigLIP SO400M 5 32 1.6 64 4 B 45.98
51 Qwen2-1.5B-Instruct LanguageBind-Video-v1.5 + SigLIP SO400M 5 64 1.6 128 8 B 46.06
52 Qwen2-1.5B-Instruct LanguageBind-Video-v1.5 + SigLIP SO400M ¢ 5 64 1.6 128 8 B 45.73
53 Qwen2-1.5B-Instruct VJEPA-H@384 + SigLIP SO400M 5 32 32 64 2 B 46.02
54  Qwen2-1.5B-Instruct VJEPA-H@384 + SigLIP SO400M 10 64 1.6 64 4 B 44.46
55 Qwen2-1.5B-Instruct VJEPA-H@384 + SigLIP SO400M 5 64 32 128 2 B 44.78
56 Qwen2-1.5B-Instruct VJEPA-H@384 + SigLIP SO400M & 5 64 32 128 2 B 41.47
57 Qwen2-1.5B-Instruct LanguageBind-Video-v1.5 + SigLIP SO400M 5 32 1.6 64 4 C 46.96
58 Qwen2-1.5B-Instruct LanguageBind-Video-v1.5 + SigLIP SO400M 5 64 1.6 128 8 C 47.66
59 Qwen2-1.5B-Instruct LanguageBind-Video-v1.5 + SigLIP SO400M ¢ 5 64 1.6 128 8 C 46.43
60 Qwen2-1.5B-Instruct VJEPA-H@384 + SigLIP SO400M 5 32 32 64 2 C 47.65
61 Qwen2-1.5B-Instruct VJEPA-H@384 + SigLIP SO400M 10 64 1.6 64 4 C 45.94
62 Qwen2-1.5B-Instruct VJEPA-H@384 + SigLIP SO400M 5 64 32 128 2 C 46.31
63  Qwen2-1.5B-Instruct VJEPA-H@384 + SigLIP SO400M & 5 64 32 128 2 C 41.76
64 Qwen2-0.5B-Instruct LanguageBind-Video-v1.5 + SigLIP SO400M 5 32 1.6 64 4 A 36.50
65 Qwen2-0.5B-Instruct LanguageBind-Video-v1.5 + SigLIP SO400M 5 64 1.6 128 8 A 35.75
66 Qwen2-0.5B-Instruct LanguageBind-Video-v1.5 + SigLIP SO400M & 5 64 1.6 128 8 A 36.43
67 Qwen2-0.5B-Instruct VJEPA-H@384 + SigLIP SO400M 5 32 32 64 2 A 36.27
68 Qwen2-0.5B-Instruct VJEPA-H@384 + SigLIP SO400M 10 64 1.6 64 4 A 37.21
69 Qwen2-0.5B-Instruct VJEPA-H@384 + SigLIP SO400M 5 64 32 128 2 A 36.80
70  Qwen2-0.5B-Instruct VJEPA-H@384 + SigLIP SO400M &4 5 64 32 128 2 A 34.64
71  Qwen2-0.5B-Instruct LanguageBind-Video-v1.5 + SigLIP SO400M 5 32 1.6 64 4 B 39.29
72 Qwen2-0.5B-Instruct LanguageBind-Video-v1.5 + SigLIP SO400M 5 64 1.6 128 8 B 39.59
73 Qwen2-0.5B-Instruct LanguageBind-Video-v1.5 + SigLIP SO400M & 5 64 1.6 128 8 B 37.36
74  Qwen2-0.5B-Instruct VJEPA-H@384 + SigLIP SO400M 5 32 32 64 2 B 40.25
75 Qwen2-0.5B-Instruct VJEPA-H@384 + SigLIP SO400M 10 64 1.6 64 4 B 39.74
76 Qwen2-0.5B-Instruct VJEPA-H@384 + SigLIP SO400M 5 64 32 128 2 B 40.01
77 Qwen2-0.5B-Instruct VJEPA-H@384 + SigLIP SO400M () 5 64 32 128 2 B 35.05
78 Qwen2-0.5B-Instruct LanguageBind-Video-v1.5 + SigLIP SO400M 5 32 1.6 64 4 C 40.19
79 Qwen2-0.5B-Instruct LanguageBind-Video-v1.5 + SigLIP SO400M 5 64 1.6 128 8 C 40.25
80 Qwen2-0.5B-Instruct LanguageBind-Video-v1.5 + SigLIP SO400M & 5 64 1.6 128 8 C 37.38
81 Qwen2-0.5B-Instruct VJEPA-H@384 + SigLIP SO400M 5 32 32 64 2 C 40.76
82 Qwen2-0.5B-Instruct VJEPA-H@384 + SigLIP SO400M 10 64 1.6 64 4 C 40.48
83 Qwen2-0.5B-Instruct VJEPA-H@384 + SigLIP SO400M 5 64 32 128 2 C 39.99
84  Qwen2-0.5B-Instruct VJEPA-H@384 + SigLIP SO400M () 5 64 32 128 2 C 35.33

Table 13. Raw results of Scaling Consistency experiments (2/2). This table presents the raw performance data of 42 model configurations
used in the Scaling Consistency experiments. Each configuration explores the effect of various parameters, including the LLM size (Qwen
variants), vision tower configurations, freezing or training vision encoders, clip duration, tokens per clip, frames per second (fps), tokens
per second (tps), tokens per frame, and data mixture. The “Average” column reports the overall performance score. These results support
the investigation into how smaller models can serve as proxies for larger models in determining effective design decisions.
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