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Supplementary Material

A. Implementation Details
A.1. Datasets

For a fair comparison, we adopt datasets originally used in
LISA [13] and PSALM [53] for training. They are listed in
Table 9 and 10 respectively.

Task Datasets
Semantic Segmentation ADE20K [54], COCO-Stuff [3], PACO-

LVIS [34], PartImageNet [11]
Referring Segmentation refCOCO/+/g [28, 50], refCLEF [17]
VQA LLaVA Instruct-150k [20]
Reasoning Segmentation ReasonSeg [13]

Table 9. Training datasets of LISA.

Task Datasets
Generic Segmentation COCO-Panoptic [18]
Referring Segmentation refCOCO/+/g [28, 50]
VQA LLaVA-v1.5-665k [21]

Table 10. Training datasets of PSALM.

A.2. Training Configurations

We follow the official implementation and training config-
urations of LISA5 and PSALM6 for training. The hyper-
parameters of LISA and PSALM training are listed in Ta-
ble 11 and 12 respectively. For ablation experiments in
Section B.2, we train models for 3 epochs and keep the
other settings the same. All models are trained on a single
8→A100 40GB machine.

B. Experiments
B.1. Evaluation on ReasonSeg and MUSE

We further evaluate the reasoning-based segmentation
benchmarks ReasonSeg [13] and MUSE [39] using LISA
and LISA-G5 trained on Ground-V. The test set results are
presented in Table 13 and Table 14. Models trained on
Ground-Vachieve a 1.8% gIoU improvement on ReasonSeg
and a 4.9% gIoU improvement on MUSE. Notably, the eval-
uation on MUSE is conducted in a zero-shot setting, and
the observed improvement highlights the effectiveness of

5https://github.com/dvlab-research/LISA
6https://github.com/zamling/PSALM

Parameters Value
Optimizer AdamW [26]
Learning Rate 3→ 10→4

Batch Size Per GPU 10
Gradient Accumulation Steps 2
Number of Epochs 10
Learning Rate Schedule WarmupDecayLR
Weight Decay 0.0
Warmup Ratio 0.03
LoRA ω 64
Image Size 224→ 224

Table 11. Training hyper-parameters for LISA.

Parameters Value
Optimizer AdamW [26]
Learning Rate 4→ 10→5

Batch Size Per GPU 8
Gradient Accumulation Steps 1
Number of Epochs 10
Learning Rate Schedule Cosine Decay
Weight Decay 0.0
Warmup Ratio 0.03
ε1 0.9
ε2 0.999
Image Size 1024→ 1024

Table 12. Training hyper-parameters for PSALM.

Models gIoU cIoU
LISA 50.3 49.8
LISA-G5 52.1 (1.8↑) 51.9 (2.1↑)

Table 13. Performance comparison on ReasonSeg test set.

Models gIoU cIoU
LISA 12.6 27.2
LISA-G5 17.5 (4.9↑) 30.4 (3.2↑)

Table 14. Performance comparison on MUSE test set (zero-shot).

training on Ground-V, particularly the multi-object and rea-
soning subsets, as MUSE involves scenarios with multiple
objects.



Figure 5. Performance of models trained with different propor-
tions of Ground-V. The average performance is calculated by av-
eraging the gIoU of all subsets.

B.2. Ablations on Data Components

We conduct two ablation studies to further understand the
introduced Ground-V. We conduct experiments with the
PSALM model. Note that we only train 3 epochs for ab-
lation studies and thus the performance is not comparable
with the performance in the main text.
Scaling of the data samples We first examines the im-
pact of dataset scaling on model performance. Models are
trained on subsets comprising 25%, 50%, 75%, and 100%
of the data to assess the effectiveness of varying data vol-
umes. The trained models are assessed on the Ground-
V test set, with the average performance across different
subsets presented in Figure5, and detailed results provided
in Table 15. As shown in Figure 5, increasing the amount of
data used during training consistently improves evaluation
performance, highlighting the effectiveness of our dataset.
Contribution of different subsets Next we explore the
importance of different subsets within Ground-V. This is
achieved by training five models, each with one subset re-
moved, alongside models trained with and without the full
Ground-V, to assess their contributions to overall perfor-
mance. As shown in Figure 6, the model trained on the full
Ground-V lies on the Pareto curve, demonstrating signifi-
cantly improved capabilities in both accurate segmentation
and effective abstention from non-existent objects.

While decreased performance on the corresponding test
set when a subset is removed from training is expected,
we observe several interesting patterns: (1) Most subsets
are mutually beneficial: For example, removing the multi-
object subset also degrades performance on the reasoning
subset, as the reasoning subset often involves multiple ob-
jects, and training on the multi-object subset enhances the
model’s ability to handle such scenarios—and vice versa.
(2) Some subsets can introduce trade-offs: For instance, the
performance on the fine-grained subset decreases when hal-

Figure 6. Performance of models trained on different subsets. X-
axis measures how accurately the models can segment the objects
and Y-axis measures how well the models can abstain the non-
existing objects. The model trained on full Ground-V is on the
Pareto curve and obtains significantly improved abilities to handle
both scenarios.

lucination examples are included during training. This sug-
gests that the hallucination subset can occasionally make
the model overly cautious, leading to the rejection of ex-
isting objects. However, despite this trade-off, including
hallucination examples in training remains valuable, as it
significantly improves overall performance and helps mit-
igate hallucination-related errors. The detailed results are
shown in Table 16.

C. Dataset Details
C.1. Statistics
We visualize the word frequencies of all subsets of Ground-
V in Figure 7 to 11. As it can be seen from these figures, the
word distributions of our dataset are highly diverse across
subsets.

C.2. Human Annotation Process
The human annotation process was meticulously designed
to ensure the creation of high-quality, consistent class labels
and accurate segmentation mask annotations for the test par-
tition of Ground-V. To minimize bias, the annotation was
carried out by 20 external annotators who were indepen-
dent of the authors. Prior to the full annotation phase, all
annotators participated in training sessions and pilot trials
to familiarize themselves with the task. Continuous qual-
ity control measures, including spot-checks and feedback
loops, were implemented to address corner cases and en-
hance annotators’ understanding of the task.

The annotation interface, illustrated in Figs. 12 to 14,
was specifically designed to support human annotations.
Each annotation instance included an image, a question, and
one or more segmentation masks, each associated with an
object name. Annotators were presented with the image,
question, and all segmentation masks along with their corre-
sponding object names simultaneously, providing complete



Method Multi-granular Multi-object Hallucination Reasoning Part Reference
Abstract (gIoU) Fine-grained (gIoU) gIoU N-Acc gIoU cIoU gIoU cIoU

PSALM (0%) 27.3 29.9 17.5 14.7 43.5 41.1 12.3 24.9
PSALM-G5 (25%) 34.1 37.3 23.7 16.9 50.2 50.8 14.6 28.7
PSALM-G5 (50%) 38.6 39.5 25.8 19.7 54.3 53.9 17.1 29.4
PSALM-G5 (75%) 45.9 43.6 28.9 22.5 60.3 59.8 18.8 31.2
PSALM-G5 (100%) 47.8 51.9 30.5 23.3 62.2 61.9 20.9 33.1

Table 15. Performance comparison of models trained with different proportions of Ground-V, evaluated on the disjoint test set of Ground-V.

Method Multi-granular Multi-object Hallucination Reasoning Part Reference
Abstract (gIoU) Fine-grained (gIoU) gIoU N-Acc gIoU cIoU gIoU cIoU

PSALM (w/o Ground-V) 27.3 29.9 17.5 14.7 43.5 41.1 12.3 24.9
PSALM-G5 (w/o Reasoning) 46.5 50.0 25.4 23.5 44.1 41.9 20.1 33.0
PSALM-G5 (w/o Hallucination) 46.7 52.6 29.4 14.9 60.1 61.0 21.4 34.5
PSALM-G5 (w/o Multi-object) 40.4 48.3 18.2 14.9 52.1 55.3 19.6 33.0
PSALM-G5 (w/o Part Ref.) 48.0 52.1 29.8 23.4 61.9 61.4 12.5 25.2
PSALM-G5 (w/o Multi-granular) 34.6 36.7 27.3 24.9 62.0 61.7 20.8 32.4
PSALM-G5 (w/ full Ground-V) 47.8 51.9 30.5 23.3 62.2 61.9 20.9 33.1

Table 16. Performance comparison of models trained with different subsets of Ground-V, evaluated on the disjoint test set of Ground-V.
We remove one subset at a time for training.

Figure 7. Word Cloud visualizations for training (top) and evaluation (bottom) sets of hallucination mitigation subsets. We show word
clouds for object, relation, and attribute hallucination.

contextual information. Annotators examined each segmen-
tation mask individually, following the order of the mask
index, and determined whether the object accurately and
relevantly answered the question by selecting one of three
options: YES, NO, or UNSURE. They adhered to com-
prehensive guidelines, which covered definitions of the five
challenges, examples for clarification, and detailed instruc-
tions for resolving ambiguous cases. If annotators were un-
sure about the correctness of a label (e.g., unfamiliar with a
”Maine Coon cat”), they were instructed to select UNSURE
by default. Additionally, if any polygon node in a segmen-
tation mask deviated by more than 5% of the object’s size
from its actual boundaries, they selected NO for segmenta-

tion verification. In practice, the 5% rule was applied based
on the annotators’ judgment and visual assessment. How-
ever, all annotators underwent training to ensure their eval-
uations aligned consistently with the requirements.

Each image-question pair was independently reviewed
by two annotators. To maintain consistency and validate
the process, periodic random audits were conducted by a
third annotator, with different annotators auditing different
instances. These audits revealed that when both initial an-
notators selected YES, there was a 95%+ probability that
the third annotator would also select YES. Based on this
finding and budget constraints, we used two annotators for
each annotation instance. Only instances where both an-



Figure 8. Word Cloud visualizations for training (top) and evaluation (bottom) sets of multi-granular subsets. We show word clouds for
coarse-grained, original, fine-grained categories.

Figure 9. Word Cloud visualizations for training (top) and evaluation (bottom) sets of reasoning subsets. We show word clouds for
questions, answers, as well as the combination of both.

Figure 10. Word Cloud visualizations for training (left) and evaluation (right) sets of part reference subsets.

notators agreed on YES were included in the final test set, ensuring high confidence in the data’s correctness. As a re-



Figure 11. Word Cloud visualizations for training (left) and evaluation (right) sets of multi-object subsets.

Figure 12. Human annotation interface for Ground-Vtest data that resemble reasoning segmentation. In this case, the question is asking
about the object that the teddy bear is sitting on instead of the teddy bear itself. Thus the answer should be NO.

sult, 23.1% of the original test data was excluded due to
erroneous or UNSURE labels. The remaining data is used
as the test partition of Ground-V.

D. Prompt Details



Figure 13. Human annotation interface for Ground-Vtest data that resemble multi-granularity referring. In this example, the label “African
Bush Elephant” is more specific than the general label “elephant” that most people would typically use. The data annotator needs to
evaluate whether this finer-grained label accurately matches the segmented object.

Figure 14. Human annotation interface for Ground-Vtest data that resemble complex referrings that that could lead to hallucinations in
segmentation. In this example, the annotator is asked to assess three types of hallucinations for each image: 1) if the mentioned object
itself is absent from the image, 2) if the relationship between objects is not present in the image, and 3) if the object’s attribute incorrectly
assigned or not present in the image. Each hallucination question is answered individually.



D.1. Prompts for Data Curation
We present the detailed prompts used for data curation below.
Prompt for attribute-level hallucination generation

System: You are a helpful assistant who can help with analyze image. You will be provided with an image containing
certain objects and a set of object classes. You need to analyze the attributes of the objects and generate an exiting
object (from the given classes) with different attribute that is not present in the image.

Few-shot Examples:

**Image 1**
- Present objects: Lemon.
- Attribute (you need to analyze the image): Yellow lemon.
- Negative sample: Green lemon.

**Image 2**
- Present objects: person
- Attribute (you need to analyze the image): Person wearing a blue shirt.
- Negative sample: Person wearing a red shirt.
Note: in this case, you need to ensure there is no person wearing red shirt in the image.

**Image 3**
- Present objects: car, road, person
- Attribute (you need to analyze the image): A shiny silver car parked in a driveway.
- Negative sample: A matte black car.

User: Now for the following image, generate an attribute-level negative sample. Only provide a attribute that is
not present in the image, which would be clearly incorrect to request for segmentation. Do not generate reasoning
process. Generate a Json dictionary in the format of ”attribute”: ”the generated negative class”. Make sure the
generated negative sample is realistic. If you think you cannot think of a good example in terms of attribute or it is
unrealistic, output ”attribute”: ”Unknown”. Generate Json only, strictly no other texts. Be concise in the generated class.

**Query Image**
- Present objects: [objects]
Assistant:



Prompt for relation-level hallucination generation

System: You are a helpful assistant who can help with analyze image. You will be provided with an image containing
certain objects and a set of object classes. Note that the object classes may not be comprehensive and you should also
pay attention to the image. You need to analyze the relations between objects and generate a relation that is not present
in the image with existing object(s). It can also be spatial relation. Generate the object first, and then generate the
relation, i.e., we should clearly know the main object from the generated phase.

Few-shot Examples:

**Image 1**
- Present objects: child, horse
- Relation (you need to analyze the image): A child sitting beside a sleeping horse.
- Negative sample: Child who is riding the horse.

**Image 2**
- Present objects: person, person
- Relation (you need to analyze the image): Two people walking in opposite directions
- Negative sample: Two people shaking hands.

**Image 3**
- Present objects: dog
- Relation (you need to analyze the image): dog on the left.
- Negative sample: dog on the right.
Note: in this case, you need to ensure there is no dog on the right in the image.

User: Now for the following image, generate an relation-level negative sample. Only provide a relation that is
not present in the image, which would be clearly incorrect to request for segmentation. Do not generate reasoning
process. Generate a Json dictionary in the format of ”relation”: ”the generated negative class”. Make sure the generated
negative sample is realistic. If you think you cannot think of a good example in terms of relation or it is unrealistic,
output ”relation”: ”Unknown”. Generate Json only, strictly no other texts. Be concise in the generated class.
**Query Image**
- Present objects: [objects]
Assistant:



Prompt for object-level hallucination generation

System: You are a helpful assistant who can help with analyze image. You will be provided with an image containing
certain objects and a set of object classes. Note that the object classes may not be comprehensive and you should also
pay attention to the image. Your task is to generate a negative class that is not present in the image.

Few-shot Examples:

**Image 1**
- Present objects: Airplane, Cloud, Runway
- Negative sample: Laptop

**Image 2**
- Present objects: Chair, Laptop, Cup, Plate
- Negative sample: Television

**Image 3**
- Present objects: boots, businessman
- Negative sample: basketball shoes, businesswoman

User: Now for the following image, generate an relation-level negative sample. Only provide a object that is
not present in the image, which would be clearly incorrect to request for segmentation. Do not generate reasoning
process. Generate a Json dictionary in the format of ”object”: ”the generated negative class”. Make sure the generated
negative sample is realistic. If you think you cannot think of a good example in terms of object or it is unrealistic,
output ”object”: ”Unknown”. Generate Json only, strictly no other texts. Be concise in the generated class. **Query
Image**
- Present objects: [objects]
Assistant:



Prompt for multi-granular fine-grained category generation

System: You are a helpful assistant who can help with analyze image. You will be provided with an image containing
certain objects and a set of object classes. Your task is to generate corresponding specifc-level class names to the given
classes. Important: the number of abstract classes you generated should be strictly same to the number of input classes.
3-Layer Hierarchical Structure:
1. Fine-grained Level:
Combines the specific instance and subcategory levels.
Example: ”Corgi,” ”Macbook,” ”SUV”
2. General Category Level:
Standard categories of objects.
Example: ”Dog,” ”Computer,” ”Car”
3. Abstract Level:
Broad, overarching categories.
Example: ”Animal,” ”Electronic Device,” ”Transportation”

Few-shot Examples:

**Image 1
- Given objects: fish, dog
- fine-grained labels: [”gold fish”, ”corgi”]

**Image 2
- Present objects: laptop, container, box
- ”fine-grained labels”: [”Macbook”, ”mug”, ”mailer box”]

**Image 3
- Present objects: Car, Road, Tree
- ”fine-grained labels”: [”Tesla”, ”Highway”, ”Oak”]

User: Now for the following image, generate granular-level object class names for the input. Generate a Json
dictionary in the format of ”fine-grained labels”: [”the generated fine-grained labels class name”, ...]. Only output the
Json dictionary. Strictly no other output. Important: If there’re multiple objects belong to the same abstract, be sure to
give them the same abstract-level names. Note that the specific level object must present in the image. If you are not
sure about the specific level or cannot distinguish, just output ”fine-grained labels”: ”Unknown” only.
**Query Image**
- Present objects: [objects]
Assistant:

Prompt for reasoning subset generation

System: You are an intelligent chatbot designed to generate question-answer pairs according to the given image and a
list of objects, each describing an object in the image you are observing. Your task is to return a question-answer pair
where the question requires reasoning and the answer can correctly answer the question.
The provided image has a height of [height] and a width of [width]. The image, image caption, objects in the image,
and their respective bounding box coordinates are as follows:
[**image**]
object at [bounding boxes]...
Coordinates represent (top-left x, top-left y, bottom-right x, bottom-right y).
The question must be framed to require image reasoning for a response. Additional requirements for the generated
question include:
1. The answer must reference the given object class or its equivalent and should not imply other potential objects.
2. The question should require some reasoning to answer and cannot be too broad.



3. The question should describe a activity or incorporate world knowledge.
4. You will output two forms of answers:
(1) objects: it contains the objects required to answer the question, each object should be in a form of object at
[bounding box].
(2) text answer: it should be one or a few coherent sentences connecting the objects in (1) that answer the question. In
the sentence, [seg-X] should be used to indicate the objects in (1), and X corresponds to the No.X objects in the list
(0-indexed).

Caption: a comfy room with table and sofa, and there is a laptop on the table.
Objects:
table at [120, 50, 240, 90];
pizza at [260, 80, 275, 100];
fork at [160, 30, 170, 35];
Plant at [315, 208, 320, 245]
Question: What steps do I need to take if I want to enjoy my meal?
Object answer: [”pizza at [160, 30, 180, 50]”, ”table at [120, 50, 240, 90]”, ”fork at [160, 30, 170, 35]”]
Text answer: ”You can pick up the metal fork [seg-2] on the wooden table [seg-1] to slice the pizza [seg-0] and then
enjoy.”

**Image 2:**
Caption: a crowded road with bus and taxi.
Objects:
person at [335.52, 359.7, 347.85999999999996, 387.71];
boat at [285, 90, 337, 154];
person at [353.84, 390.06, 371.75, 412.82];
tree at [387.85, 3.42, 415.88, 40.67];
dog at [215, 362, 225.475, 381.84];
Question: What are people taking to reach the other side and how many people are there?
Object answer: [”boat at [285, 90, 337, 154]”, ”person at [335.52, 359.7, 347.85999999999996, 387.71]”, ”person at
[353.84, 390.06, 371.75, 412.82]”]
Text answer: They are taking a boat [seg-0] to go to the other side of the river, and there are two persons [seg-1] [seg-2].

**Query Image**
Question: question
Answer: answer

User: Return the generated question and answer in a Json dictionary only.
**Query Image**
- Present objects: [objects]...
Assistant:


