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Figure 7. Intuitive examples of aleatoric and epistemic uncertainty
in dog-wolf binary classification.

A. Uncertainty Quantification
In deep learning, epistemic uncertainty and aleatoric un-
certainty represent two distinct types of uncertainty, com-
monly used to describe the various sources of uncertainty
in a model’s predictions:
• Epistemic uncertainty:

– This type of uncertainty arises from a model’s lack of
knowledge, often due to insufficient training data or the
model’s complexity. It reflects the model’s incomplete
or uncertain understanding of the task and can gener-
ally be reduced or eliminated with more data or a more
effective model.

– For example, in a deep neural network, if there is lit-
tle data available for certain classes or the model has
not been trained sufficiently, the model may be highly
uncertain in its predictions for certain examples.

– This uncertainty is generally reducible, as it can be mit-
igated by adding more training data or improving the
model architecture.

– In Figure 7, the “Bulldog” and “Arctic Wolf” ex-
hibit significant feature differences from the “Dog” and
“Wolf” in the training set, leading to higher epistemic
uncertainty. After these examples are incorporated into
model training, predictive performance on them im-
proves, thereby reducing their epistemic uncertainty.

• Aleatoric uncertainty:
– This type of uncertainty stems from inherent noise or

variability in the data, i.e., the intrinsic randomness or
uncontrollable factors within the data.

– For instance, in image classification, factors like fea-
ture confusion, lighting conditions, or object occlusion
may lead to instability in the model’s predictions.

– This uncertainty is generally irreducible because it

originates from the intrinsic properties of the data, not
from issues with the model or training process.

– In Figure 7, the “Seppala Siberian Sleddog” resembles
the “Wolf” in appearance but belongs to the “Dog”
class, leading to higher aleatoric uncertainty. Due to
feature confusion, incorporating these examples into
model training may not substantially improve perfor-
mance or reduce their aleatoric uncertainty.

B. Label-Wise Free Energy
EBMs define the probability distribution in multi-label set-
tings through the logits as:
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where yc = 1 indicates that instance x belongs to the c-th
class while yc = �1 indicates not, fyc (x) denotes predicted
logit of the model f for instance x regarding the c-th class,
and Eyc (x) = � log

�
1 + efyc (x)

�
is the label-wise free

energy for instance x on class yc.

C. The Pseudocode of EAOA
The pseudocode of EAOA is summarized in Algorithm 1.

D. Comparing Methods
We consider the following AL methods as baselines:
• Random, which selects instances at random;
• Uncertainty, which selects instances with the highest en-

tropy of predictions;
• Certainty, which selects instances with the lowest entropy

of predictions;
• Coreset, which uses the concept of core-set selection to

choose diverse instances;
• BADGE, which selects instances by considering both un-

certainty and diversity in the gradient via k-means++
clustering;

• CCAL, which employs contrastive learning to extract the
semantic and distinctive scores of examples for instance
querying;

• MQNet, which balances the purity score and informative-
ness score to select instances through meta-learning;



Algorithm 1 The EAOA algorithm
Input: Labeled data pool DL = Dkno

L [ Dunk
L , unlabeled

data pool DU , detector f✓D , target classifier f✓C , query bud-
get b, dynamic factor kt, and target precision tP .
Process: (The t-th AL round)

1: # Detector training
2: Update ✓D by minimizing Ldetector in Eq. (13) using

all labeled examples from DL.
3: # Epistemic uncertainty estimating
4: Extract logit outputs and features from f✓D for exam-

ples in DL and DU , respectively.
5: Based on model outputs, estimate the learning-based

epistemic uncertainty score for each example in DU us-
ing Eq. (1) and Remark 1.

6: Based on feature similarity, find K-nearest neighbors in
DU for each example in DL, and obtain reverse neigh-
bors by class in DL for each example in DU .

7: Estimate data-centric epistemic uncertainty score for
each example in DU using Eq. (7) and Remark 1.

8: For each example, combine the two scores into one final
epistemic uncertainty score using GMM and Eq. (8).

9: # Target classifier training
10: Update ✓C by minimizing Lclassifier in Eq. (14) using

all known class labeled examples from Dkno
L .

11: # Aleatoric uncertainty estimating
12: Extract logit outputs from f✓C for examples in DU .
13: Estimate aleatoric uncertainty score for each example

in DU using Remark 2.
14: # Active sampling
15: ktb examples with the lowest epistemic uncertainty

scores are selected first to form a candidate query set.
16: b examples with the highest aleatoric uncertainty scores

are then queried to form the final query set Xquery .
17: # Oracle labeling
18: Query labels from Oracle and obtain Xquery

kno , Xquery
unk ,

and query precision rP =
���X

query
kno

Xquery

���.
19: Update kt to kt+1 using Eq. (10) based on tP � rP .
20: Update corresponding data pools: DU = DU�Xquery ,

Dkno
L = Dkno

L [Xquery
kno , and Dunk

L = Dunk
L [Xquery

unk .
Output: DL, DU , ✓D, ✓C , and kt+1 for next round.

• LfOSA, which selects instances based on the maximum
activation value produced by the (C + 1)-class detector;

• EOAL, which queries instances by calculating the en-
tropy of examples in both known and unknown classes;

• BUAL, which queries instances by adaptively combining
the uncertainty obtained from positive and negative clas-
sifiers trained in different ways.

Among these methods, EOAL and BUAL are currently
state-of-the-art.

E. Additional Ablation Studies

Figure 8. Ablation results for K in reverse k-NN on CIFAR-10
(Left) and CIFAR-100 (Right). “MR” denotes mismatch ratio.
“Best” indicates the top-performing method in the comparisons.

Figure 9. Ablation results for mkno and munk in margin-based
energy loss on CIFAR-10 (Left) and CIFAR-100 (Right).

Figure 8 illustrates the effect of the hyperparameter K
in reverse k-NN on EAOA’s performance, with values set to
[150, 200, 250, 300, 350]. Figure 9 presents the influence of
the known class margin mkno and the unknown class mar-
gin munk in margin-based energy loss Lenergy on EAOA’s
performance, with values set to [-29, -27, -25, -23, -21] for
mkno and [-11, -9, -7, -5, -3] for munk. While the opti-
mal value of K, mkno, and munk differ across different
settings, their overall performance remains relatively stable
compared to the top-performing method in the comparisons,
with K = 250, mkno = �25, and munk = �7 consistently
achieving strong results.



Figure 10. Ablation results for k1, a and z in target-driven adaptive
sampling strategy on CIFAR-10 (Left) and CIFAR-100 (Right).

Figure 10 shows the impact of initial round k1, varia-
tion amplitude a, and triggering threshold z in Eq. 10 on
EAOA’s performance, with values set to [-3, -5, -7] for
k1, [0.5, 1, 1.5] for a, and [0.025, 0.05, 0.075] for z. An
excessively large k1 value may lead to initial rounds that
prioritize aleatoric uncertainty, beneficial for lower mis-
match ratios. Conversely, a small k1 value emphasizes epis-
temic uncertainty, making it suitable for higher mismatch
ratios. Here, k1 = 5 consistently delivers strong perfor-
mance across various datasets. In practical applications,
prior knowledge about the dataset can be used to further ad-
just its value. For hyperparameters a and z, their values are
simply set to 1 and 0.05 (ensuring no adjustments are trig-
gered when the difference between target and actual query
precision is within ±0.05, or a range of 0.1) respectively
to simplify parameter tuning. Although the parameter se-
lection here is intuitive, the results in Figure 10 confirm its
suitability.
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