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6. Implementation Details

For the pre-training phase, we apply CLIP-ViT/B-16 [46]
as the initialized visual encoder, and ClinicalBERT [21] as
the initialized textual encoder and auto-regressive decoder.
All images are resized to 288×288. The dimension of em-
beddings d is set to 768. The Modality Co-Attention Mod-
ule uses L = 6 layers. The total trainable model size is
326M. The temperature parameters τ1, τ2, τ3 are set to 0.07.
The flexibility weight of the positive pair is cross-validated
among different value choices and set λ = 0.01. Our pre-
training phase contains 20 epochs for stage one, and 10
epochs for stage two, with 256 as batch size. The model
uses AdamW optimizer with a learning rate of 4e-6.

For the fine-tuning phase, the parameters for the Gated
Cross-Attention Module are 14.8M, while 122M for the
auto-regressive decoder. We fine-tune the model for 60
epochs with a learning rate of 2e-5 and a batch size of 64.

Our computing resources are two NVIDIA A100 GPUs,
and the training uses 16-mixed precision. The pre-training
costs roughly 24 hours, while fine-tuning time is around
8 hours. The inference time for one image-question pair
is around 0.27s. During inference, to fairly compare with
other multi-label classification-based methods, we apply the
test set answers as the candidate answers, compare the gen-
erated open-form answer from our auto-regressive decoder
with these candidates, and choose the one with the lowest
language modeling loss.

7. Additive Ablation Studies

Besides the ablation study we conduct in Sec. 4.4, we also
evaluate the impacts of different methods we use to gener-
ate the soft labels, and how the λ (Eq. (5)) will affect the
learning of these soft labels.

# Soft Label Generation Method RAD-VQA SLAKE Path-VQA VQA-2019 Avg
1 - 75.64 81.09 60.92 78.14 73.95
2 CLIP[46] 76.35 81.32 61.38 78.42 74.37
3 MedCLIP [54] 78.80 84.82 62.83 81.03 76.87
4 PubMedCLIP[15] 80.02 85.32 63.12 80.93 77.35
5 PMC-CLIP[32] 79.63 84.98 63.01 80.44 77.02
6 BioMedCLIP [57] 80.26 85.37 63.96 81.26 77.71

Table 5. Ablation study on different choices of soft label genera-
tion methods for Med-VQA tasks.

Figure 6. Ablation study on different choices of flexibility weight
λ for Med-VQA tasks. Datasets are split based on the range of
accuracy values.

7.1. Impacts of Different Soft Label Generation
Methods

During our experiment for exploring soft label generation,
we attempt different CLIP-based models, evaluating their
performances in depicting the similarity between image-
text pairs. Our ablative experiment focuses on several rep-
resentative CLIP-based models [15, 32, 46, 54, 57]. We use
the base version of these models to keep all model sizes in
a comparative range.

As shown in Tab. 5, when we focus on the average accu-
racy, the comparison between #2 (CLIP [46]) and the best
one #6 (BioMedCLIP [57]) indicates that soft labels gen-
erated from the medical-specific model have better instruc-
tional impacts than the model from natural domain. While
#4, #5, #6 are all models pre-trained on medical datasets,
the average results are close to each other, which demon-
strates that the usage of medical knowledge has a nearly
equal effect on improving the model representation abil-
ity for Med-VQA tasks. In conclusion, we believe a well-
trained CLIP-based model in medical domain will benefit
the soft label supervision, and thus improving the perfor-
mance of downstream tasks (e.g., Med-VQA).

7.2. Impacts of flexibility weight λ for soft labels

We also evaluate different settings of λ that control the pos-
itive sample’s similarity, and we find out that λ = 0.01 is a
locally best choice, as shown in Fig. 6. Our explanation for
this performance difference is that when we add less weight,
the model might ignore the positive samples because of the
high similarity of both hard negative ones and positive ones.
Moreover, if we apply too much weight, the model will fo-
cus too much on positive samples, ignoring the similarity
caused by similar diseases among patients, resulting in the
decline of performance. Therefore, we believe our setting



is a trade-off between focus and ignorance.
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