
Learning Conditional Space-Time Prompt Distributions for Video
Class-Incremental Learning

Supplementary Material

6. Image Continual Learning
Before the emergence of prompt-based methods, contin-
ual learning approaches in the image domain were broadly
categorized into three types [40, 58]: regularization-based
methods, exemplar-based methods, and architecture-based
methods.

Regularization-based methods [1, 8, 15, 22, 27, 32, 42,
64] constrain the optimization of network parameters to
preserve the important information of learned tasks, with
knowledge distillation [17] being the most popular tech-
nique utilized. However, these methods cannot achieve sat-
isfactory performance under challenging settings or with
complex datasets [39].

Rehearsal-based methods [3, 4, 36, 49, 53, 56, 69] typi-
cally mitigate catastrophic forgetting by storing a small set
of representative exemplars [3, 36, 49, 56] or generating
synthetic samples from previous classes [23, 41, 43, 53].
However, methods relying on raw exemplars suffer perfor-
mance drops with limited buffer sizes and pose data pri-
vacy concerns [67], while those using synthetic data strug-
gle with significant domain gaps between synthetic and real
distributions [41]. Note that although DiffClass [41] also
employs a diffusion model, it generates synthetic images
and requires fine-tuning Stable Diffusion [50], which is
computationally expensive. In contrast, our method gen-
erates prompts instead, offering significantly greater com-
putational and parameter efficiency.

Architecture-based methods [13, 20, 51, 52, 62] retain
knowledge of old tasks by designing specific components
in the architecture or expanding the current feature extrac-
tor for new data. Nevertheless, these methods require a sub-
stantial number of additional parameters and test-time task
identities.

7. Algorithms for CoSTEP
We detail the training and test time algorithms for CoSTEP
in Algorithms 1 and 2, respectively.

8. Details of prompt learning
We adhere to a widely recognized prompt tuning protocol
[21, 67]. The prompt P 2 RNp⇥D is trainable, while the
ViT remaining fixed. P is appended to the patch embedding
of each frame (or frame grid) before being input into the
self-attention layers of ViT.

Consider a single frame/frame grid x 2 RH⇥W⇥C . Sup-
pose a ViT is represented as f = fe � fr, where fe is the

input embedding layer, and fr is a stack of self-attention
layers. The ViT first reshapes the image x into a sequence
of flattened 2D patches xp 2 RL⇥(S2⇥C), with L repre-
senting the number of patches, S the patch size, and C

the original channel count. Here we assume the first token
in xp is the [class] token. The pre-trained embedding
layer fe then maps the patched image to a patch embedding
feature xe = fe(xp) 2 RL⇥D. With the ViT frozen, we
prepend the trainable prompts P to the patch embedding
feature, resulting in an extended sequence xpt = [P;xe] 2
R(Np+L)⇥D. This sequence is then processed by fr(xpt)
to perform classification tasks. In this manner, fr applies
self-attention across the video frame/frame grid patches and
prompts, enabling their interaction.

This process is repeated for all frames/frame grids, align-
ing with the purple block in Figure 3 on the right side, to
compute the video classification loss. Backpropagation is
then performed, and P is updated using a commonly used
optimizer, in our case, SGD.

9. Inference with the Diffusion Model
During inference, the diffusion model [18] generates P0

by iteratively denoising over T steps, starting from ran-
dom Gaussian noise PT . Reversing the forward step,
q(Pt�1|Pt), is computationally impractical, so the model
instead focuses on maximizing the variational lower bound
using parameterized Gaussian transitions, p✓(Pt�1|Pt, Ê),
where ✓ are the model’s parameters. The reverse process
starts from random noise, PT ⇠ N (0, I), and progresses
through each step as:

p✓(P0:T |Ê) = p✓(PT |Ê)
TY

t=1

p✓(Pt�1|Pt, Ê), (6)

where

p✓(Pt�1|Pt, Ê) = N (Pt�1;µ✓(Pt, Ê, t),�2
t
I), (7)

µ✓(Pt, t) =
1

p
↵t

✓
Pt �

1� ↵tp
1� ↵̄t

✏✓(Pt, Ê, t)

◆
. (8)

Therefore, to sample from p✓(Pt�1|Pt), one can per-
form the following:

Algorithm 1 CoSTEP at training time

Require: Tasks {T 1
, T 2

, . . . , T K}, task-specific prompts {Pk}K
k=1, frozen pre-trained backbone, classifier parameters �,

diffusion parameters ✓, diffusion steps T , total number of training epochs E, number of epochs for the first training stage
E1

1: for k := 1 ! K do
2: for e := 1 ! E do
3: for batch b in T K do
4: if e E1 then
5: Calculate loss `stage-1 (Section 3.3)
6: Update Pk and �

7: else
8: Extract video embeddings Ê for use as conditions
9: Pk

0 = Pk

10: t ⇠ Uniform(1, . . . , T)
11: Calculate Pk

t
(Equation 3)

12: Calculate diffusion loss `diffusion (Equation 4)
13: Calculate the final loss `stage-2 (Equation 3.4)
14: Update ✓ and �

15: end if
16: end for
17: end for
18: end for

Algorithm 2 CoSTEP at test time
Require: frozen pre-trained backbone, trained classifier

g�, trained diffusion network ✏✓, diffusion steps T
1: Extract video embeddings Ê for use as conditions
2: PT ⇠ N (0, I)
3: for t := T ! 1 do
4: Calculate Pt�1 (Equation 9)
5: end for
6: Use P0 as a prompt for the frozen pre-trained backbone

to calculate the final prediction

Pt�1 = µ✓(Pt, Ê, t) + �t✏

=
1

p
↵t

✓
Pt �

1� ↵tp
1� ↵̄t

✏✓(Pt, Ê, t)

◆
+ �t✏

(9)

10. Evaluation Metrics
We evaluate the model on all seen classes and report the
average accuracy (Acc) and backward forgetting (BWF) on
all K observed tasks:

Acc =
1

K

KX

i=1

AK,i, (10)

BWF =
1

K � 1

K�1X

i=1

Ai,i �AK,i, (11)

where Ai,j is the accuracy of task j after training task i.

11. More implementation details

For training CoSTEP’s diffusion model, we use an AdamW
optimizer with a linear warm-up scheme. Other trainable
modules use an SGD optimizer, and both optimizers operate
without decay. The initial learning rates are set at 0.001 for
the diffusion model and 0.01 for the other components. All
input video frames are resized to 224⇥ 224 and normalized
to the range [0, 1]. The diffusion model undergoes T = 50
diffusion steps. All models are implemented in PyTorch.

The U-Net in our diffusion model consists of 3 layers,
each layer comprising two residual blocks. Each block in-
cludes two convolutions, followed by a group norm and
Mish activation, and is accompanied by either a down-
sampling or upsampling operation. Position embeddings
for different prompts are integrated using a fully-connected
layer, which is added to the output of the first convolution.

12. More Experiments

The length of prompts. The capacity of each learnable
prompt is determined by its length. Figure 7 demonstrates
the variation in average accuracy on UCF101 (10 tasks) as
the length of prompts changes. It’s clear that prompts that
are too short invariably lead to poorer outcomes, whereas
prompts that are too long can result in underfitting. Based
on the curve observed, we choose a prompt length of 6.

Figure 7. The effect of the prompt length on UCF101 (10
tasks).

Figure 8. The effect of the number of frames in a frame grid
on UCF101 (10 tasks).

Figure 9. Average accuracy per task on UCF101 (10 tasks).

Table 7. Average accuracy with different numbers Monte Carlo
samples on UCF101 (10 tasks).

Monte Carlo Samples
1 5 10 20

96.51 96.80 97.02 96.18

Number of frames in a frame grid. We scale down the
original frames to create frame grids, thereby controlling

the number of frames observed by the model in a single
frame grid. Figure 8 illustrates how varying the number
of frames in a frame grid impacts performance on UCF101
(10 tasks). Increasing the frame count enhances temporal
resolution but at the cost of diminishing the detail in each
frame. In contrast, a smaller frame count preserves more
information from each original frame but results in lower
temporal resolution. We set the number of frames as 25
according to the curve.

Number of Monte Carlo samples. Typically, using more
Monte Carlo samples leads to a more accurate approxima-
tion of the log-likelihood in Equation 1 and better gener-

Table 8. Average accuracy with different numbers of stored video representations/raw videos on UCF101 (10 tasks).

Storage type 5 / class 10 / class 20 / class
L2P [67] raw video 84.43 85.37 89.61
CODA-Prompt [54] raw video 83.29 88.39 92.07

CoSTEP (Ours) video representation 90.26 94.49 96.51

Table 9. Average accuracy of frame grids vs. a temporal transformer for temporal modeling on Something-Something v2.

SSv2 10 ⇥ 9 stages SSv2 5 ⇥ 18 stages
Temporal Transformer [61] 37.73 34.21
CoSTEP 41.44 36.60

alization to new data. We increased the number of Monte
Carlo samples for CoSTEP on UCF101 (10 tasks) and re-
port the results in Table 7. The results show a improvement
in performance.

Number of stored video representations. As described
in Section 3.4, to prevent forgetting during the training of
the diffusion model, we store m video representations from
previous tasks. These representations are used along with
current task data to calculate `diffusion according to Equa-
tion 4. Unlike traditional rehearsal methods that store raw
videos or selected frames, our approach stores only one rep-
resentation vector per video, greatly improving memory ef-
ficiency and reducing privacy risks since these vectors take
up less space and are less revealing than raw video data.

Table 8 shows comparisons for different values of m

and contrasts the performance of our CoSTEP with L2P

and CODA-Prompt under the same m. Notably, CoSTEP
stores just one video representation per video, whereas L2P
and CODA-Prompt store an entire raw video per instance,
as they do not utilize global video representations in their
methods. Despite the disadvantage for our CoSTEP, which
relies on representation vectors from a frozen CLIP [48]
compared to competitors using raw videos, CoSTEP still
achieves significantly higher average accuracy than both
L2P and CODA-Prompt with the same value of m. This
highlights CoSTEP’s efficiency and effectiveness, showing
it can outperform while only storing representation vectors
that require much less memory than raw videos or frames.

Frame grids vs. temporal transformer. In table 9, we
compare the frame grid approach with a temporal trans-
former applied to all frame features for temporal modeling
on the Something-Something v2. The architecture of the

temporal transformer used in this experiment is identical to
that used in PIVOT [61]. Using frame grids performs bet-
ter, likely because: 1) the temporal transformer uses self-
attention on high-level frame features, missing local patch
interactions across frames, and 2) the temporal transformer
adds more parameters, increasing its susceptibility to catas-
trophic forgetting.

Per-task analysis. Figure 9 shows the average accuracy
across tasks after training each task for CoSTEP, L2P, and
CODA-Prompt. CoSTEP consistently records the highest
average accuracy after each task and shows the least decline
in performance as more tasks are added. This highlights
CoSTEP’s enhanced learning capacity and adaptability, as
well as its ability to retain previous knowledge effectively,
thanks to its use of a diffusion model.

Efficiency in training and inference. The U-Net we use
is small, as it reconstructs prompt vectors instead of raw
images. It’s only slightly larger than the combination of
prompt pool and attention vectors used by CODA-Prompt
[54] and significantly smaller than the temporal trans-
former and prompt pool in PIVOT [61]. Therefore, a for-
ward pass through our U-Net is not slower than those in
CODA-Prompt and PIVOT.

We report the average training and inference time per
batch (batch size 50) in Table 10, calculated across all
batches. The training time for CoSTEP is comparable to
CODA-Prompt, L2P, and PIVOT because, during train-
ing, the diffusion model randomly selects a single timestep
and computes the diffusion loss, requiring only one addi-
tional forward pass through the small U-Net per sample.
During inference, CoSTEP requires more time than the oth-
ers, as it performs T (in our experiments T = 50) reverse

Table 10. Average training/inference time per batch (seconds).

CoSTEP CODA-Prompt [54] L2P [67] PIVOT [61]

Training 0.41 0.42 0.40 0.57
Inference 0.67 0.37 0.36 0.53

Table 11. Accuracy and interence time with different diffusion steps on HMDB51 (5 tasks).

Steps 10 25 50 100 150 200
Acc (") 52.72 59.83 61.70 61.72 61.08 61.74

Inference time (#) 0.50 0.55 0.67 0.77 0.83 0.88

diffusion steps to generate a prompt.

Number of diffusion steps. Table 11 presents the infer-
ence time and average accuracy for different diffusion steps
on HMDB51 (5 tasks). Using fewer than 50 steps degrades
performance, as the diffusion model struggles to learn a
valid prompt distribution. Beyond 50 steps, accuracy im-
provements are marginal, while inference time increases
substantially.

13. More visualizations
Visualization of video representations. Figure 10 shows
a t-SNE visualization of video representations from
CoSTEP and CODA-Prompt on the UCF101 (10 tasks)
test set after completing training on all tasks. The features
generated using CoSTEP’s space-time prompts are better
clustered and more discriminative compared to those gen-
erated with CODA-Prompt. This further explains why
CoSTEP achieves better performance: it generates prompts
that more effectively cluster video features of the same
class.

14. Discussions
Limitations. CoSTEP enables temporal reasoning by in-
corporating a frame grid, enhancing pre-trained image mod-
els’ capabilities to model temporal relationships between
frames. It is simple to implement, easily adaptable to
prompt learning frameworks, and introduces no additional
parameters, minimizing the risk of forgetting. Ideally, this
approach would benefit from selecting the most representa-
tive frames or patches associated with an action to construct
the frame grid. However, CoSTEP currently uses a uniform
sampling to select frames, which may overlook important
temporal patterns. Additionally, scaling down frames to
create the grid may lead to reduced resolution and loss of

detail. While addressing these issues is not the primary fo-
cus of this paper, future work could explore improved meth-
ods for selecting representative frames or patches and miti-
gating detail loss.

Societal Impacts. Although CoSTEP stores only minimal
video features from old tasks, there is still a possibility that
it retains some information about the original video. There-
fore, CoSTEP may not be suitable in scenarios where pri-
vacy concerns are extremely stringent.

Figure 10. t-SNE visualization of video representations produced by CODA-Prompt (left) and CoSTEP (right) on UCF101 (10 tasks).
Each point represents a De-dimensional feature, with different colors indicating distinct classes.

