
GG-SSMs: Graph-Generating State Space Models

Supplementary Material

1. Chazelle’s MST Algorithm
In this section, we provide a concise overview of Chazelle’s
MST algorithm [1] and why it is instrumental to our pro-
posed Graph-Generating State Space Models (GG-SSMs).
Although multiple efficient minimum spanning tree (MST)
algorithms exist (e.g., Kruskal’s, Prim’s, or Borůvka’s),
Chazelle’s algorithm is particularly interesting due to its
near-linear time complexity in the general graph setting.

A

B

C

D

E

F

wABwAF

wBCwFE

wCD

Figure 1. Chazelle’s MST Overview. Soft heaps allow near-
linear sorting of edges. MST edges (in blue) form a spanning
structure with no cycles, connecting all vertices using the small-
est weights w.

1.1. Core Idea and Time Complexity
Chazelle’s MST algorithm belongs to the family of soft
heap approaches. Its most prominent feature is achieving
a runtime of O(E α(E, V )), where
• V is the number of vertices in the graph,
• E is the number of edges in the graph,
• α(·, ·) is the inverse Ackermann function, a function

that grows extremely slowly (much more slowly than
log log n).

For any practical input size (e.g., up to millions of edges),
α(E, V ) remains a small constant (typically ≤ 4). There-
fore, the runtime is effectively linear for all real-world pur-
poses.

Algorithmic Outline. At a high level, Chazelle’s algo-
rithm proceeds by maintaining a specialized priority queue
known as a soft heap to handle edge weight comparisons
and merges. It selectively corrupts (or perturbs) a small
fraction of keys but guarantees a sufficiently accurate or-
dering to recover the MST. The soft heap structure allows
various operations like insertions, extractions, and merges

to be executed in approximately constant amortized time,
modulo the very slowly growing α factor.

The algorithm can be outlined in three major steps:
1. Sort or partition the edges using the soft-heap struc-

ture such that they can be processed in a non-decreasing
order of weights.

2. Merge edge sets while extracting edge candidates for
the MST. These extractions remain almost linear because
each edge is either integrated into the MST structure or
discarded.

3. Selective Corruption & Verification: Since the soft
heap may slightly perturb edge weights, a verification
step ensures that these corrupted weights do not impact
the MST correctness. With high probability, only a small
fraction of edges require re-checking.

By the end, the edges forming the MST are collected using
a Union-Find data structure (or a similar disjoint set data
structure), combining efficiency with theoretical guarantees
of correctness.

1.2. Practical Implications for GG-SSMs
In our GG-SSM framework, each layer requires construct-
ing an MST on feature embeddings (e.g., pixel or token em-
beddings) to identify critical connections before performing
state propagation. Since the number of edges E can be large
in dense graphs, employing Chazelle’s MST algorithm with
its near-linear time complexity is particularly appealing:
• Scalability: For a graph of L vertices (e.g., L embed-

dings), we can handle O(L2) potential edges in worst-
case dense settings or employ faster approximate meth-
ods in sparser representations. Either way, Chazelle’s
O(E α(E, V )) ensures minimal overhead when E is pro-
portional to L or L logL.

• Uniqueness of MST Paths: MST ensures exactly L− 1
edges and a unique path between any two nodes. This
property is crucial for our GG-SSMs, as it cleanly defines
the path by which hidden states propagate. It further lim-
its redundant computations and fosters efficient parameter
sharing in state updates.

1.3. Intuition and Benefits
Intuitively, MST-based graph construction identifies the
closest (or most similar) neighbors by selecting edges of
the smallest weight (lowest dissimilarity). This yields a
minimal set of edges connecting all nodes, providing a con-
cise but effective skeleton to diffuse signals across the entire
feature set. Consequently, even high-dimensional data with
long-range dependencies can be efficiently processed with
minimal redundancy. The slow-growing α(·, ·) factor en-



sures that the overhead of constructing and maintaining this
structure remains negligible for practical dataset sizes.

References
[1] Bernard Chazelle. A minimum spanning tree algorithm

with inverse-ackermann type complexity. J. ACM, 47(6):
1028–1047, 2000. 1


	Chazelle's MST Algorithm
	Core Idea and Time Complexity
	Practical Implications for GG-SSMs
	Intuition and Benefits


