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Abstract

The study of security in machine learning mainly fo-
cuses on downstream task-specific attacks, where the ad-
versarial example is obtained by optimizing a loss function
specific to the downstream task. At the same time, it has
become standard practice for machine learning practition-
ers to adopt publicly available pre-trained vision founda-
tion models, effectively sharing a common backbone archi-
tecture across a multitude of applications such as classifi-
cation, segmentation, depth estimation, retrieval, question-
answering and more. The study of attacks on such founda-
tion models and their impact to multiple downstream tasks
remains vastly unexplored. This work proposes a general
framework that forges task-agnostic adversarial examples
by maximally disrupting the feature representation obtained
with foundation models. We extensively evaluate the secu-
rity of the feature representations obtained by popular vi-
sion foundation models by measuring the impact of this at-
tack on multiple downstream tasks and its transferability
between models.

1. Introduction

Vision Foundation Models (VFMs) are becoming increas-
ingly popular due to their versatility in handling a wide
range of image-based downstream tasks. Once trained,
these models can be minimally fine-tuned to perform clas-
sification and semantic segmentation [30, 43], object de-
tection [37], depth estimation [65, 66], visual question-
answering [8, 56], image captioning [4 1], retrieval [19], wa-
termarking [20] and more. VFMs are trained with differ-
ent strategies depending on the Self-Supervised Learning
(SSL) framework. Additionally, some VFMs benefit from
the bridge between the text and image modalities as offered
by CLIP [48] and follow-up works [31, 33, 34].

VEMs have become a crucial component in many advanced
systems due to their versatility, performances, and availabil-
ity as open-sourced models, which on the other hand raises
security concerns. Given their ubiquity, it is crucial to as-
sess their robustness and their security against attacks.
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This paper defines the robustness of VFMs as the sys-
tem’s ability to produce reliable and consistent outputs for
a given downstream task when subjected to standard non-
adversarial degradations, such as lossy compression, rota-
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Figure 1. Adversarial example attacks on DinoV2 ViT-S model.
The Task-Agnostic Attack deludes both the segmentation and the
classification, contrary to attacks specific to a downstream task.



tion, flipping, contrast changes, blurring, etc. The security
of VFMs, on the other hand, is defined as the system’s re-
silience in maintaining output integrity for the downstream
task when faced with adversarial attacks designed to alter
their output. Despite the popularity of foundation models,
the security aspect remains under-explored [4].

Traditional adversarial examples are designed with a
specific downstream task in mind. We refer to this fam-
ily of attacks as task-specific attacks (TSAs). These exploit
the particularities of the downstream task head to create ad-
versarial examples that disrupt the model’s performance on
that task. A TSA can be non-targeted, aiming to alter the
task label to any incorrect output, or targeted, where the
task label is changed to a specific, desired output. While
effective, these attacks are limited by their reliance on the
characteristics of the downstream tasks.

In contrast, this paper introduces task-agnostic attacks
(TAAs) which do not consider the downstream task head,
but rather only target the foundation model. TAAs can also
be divided into untargeted attacks, which aim to move the
latent representation far from the original one, and targeted
attacks, which aim to move the latent to a specific pre-
defined target in the latent space. Fig. | illustrates that
while TSA perform best for the designated downstream
task, transferability to other tasks is limited. In contrast,
TAA generates an adversarial sample that effectively de-
ceive the model across a range of applications. This pa-
per investigates the efficiency and transferability of untar-
geted TAAs on foundation models across various down-
stream tasks and models.

Our first contribution is the design of a new untargeted
TAA with variants perturbating different tokens of a Vi-
sion Transformer (ViT). The second contribution evaluates
the pervasion of TAAs in terms of their ability to delude
downstream tasks like classification, segmentation, image
retrieval, etc. We also compare TAAs and TSAs for the
same image distortion budget. Finally, we investigate the
transferability of the attacks from one white-box source
model to a black-box target model.

We demonstrate that task-agnostic attacks generalize ef-
fectively across multiple downstream tasks, model sizes and
datasets, revealing their universality and their dangerous-
ness against any self-supervised learning and multi-modal
system. These insights emphasize the need for further in-
vestigation into the security of foundation models before
their widespread deployment in critical applications.

2. Related Work
2.1. Vision Foundation Models

VEMs provide an unprecedented level of utility and versa-
tility for a wide range of image-based tasks. VFMs differ
in their architecture, their size, and their training set, but the

3580

main difference lies in the SSL framework. The training
objective is key to create a universal model which feature
representations can be applied to a vast amount of down-
stream tasks.

MAE [24] is based solely on the Masked Image Mod-
elling (MIM) objective, where an encoder-decoder architec-
ture learns to reconstruct masked image patches from a few
visible patches only. MSN [2] combines MIM with Siamese
Networks to avoid pixel and token-level reconstructions. A
teacher network computes the representation of a view of
an image, while a student network computes the representa-
tion of another partially masked view. MSN is optimized by
learning a student that can match the output of the teacher
network. CAE [14] also learns to predict masked visual to-
kens from visible tokens by aligning their representations.
I-JEPA [3] predicts representations of various blocks of an
image given only a context block obtained through a spe-
cific masking strategy.

DiNO [11] first proposed self-distillation with no labels.
The outputs of a teacher and student networks are passed
through a softmax, and the objective is for the student to
minimize the cross-entropy loss between the two probabil-
ity distributions. iBOT [68] builds on top of DiNO, combin-
ing the self-distillation strategy with the MIM objective of
BEIT [5] within self-distillation. DINOv2 [43] improves on
DiNO by using a larger and curated dataset, namely LVD-
142M. It relies on an efficient implementation for training
at scale and an advanced SSL framework. In particular,
the authors combine the DiNO cross-entropy loss with the
MIM objective used in iBOT. DiNOv2 also benefits from
the Sinkhorn-Knopp batch normalization of SWAV [58].
The largest model, ViT-G, is distilled into smaller models.

Our study considers a set of 18 popular and recent pre-
trained VFMs listed in Tab. 1. All models have been pre-
trained on the ImageNet dataset [16], except for DINOv2,
which was pre-trained on LVD-142M [43], a superset of
ImageNet. We only consider ViTs with patch sizes 14 or
16, since most available VFMs use such a patching strategy.

2.2. Adversarial Example Attacks

The seminal works [22, 53] on adversarial examples reveal
the paradox that Deep Learning classifiers are robust but
not secure. They are robust because their prediction likely
remains unchanged when the input image is corrupted by
noise addition or JPEG compression. They are not secure
because an attacker can craft a low-amplitude perturbation
that deludes the classifier. These attacks are typically cate-
gorized based on the attacker’s knowledge and access to the
target model: white-box attacks and black-box attacks.

In the white-box scenario, the attacker has the complete
knowledge of the model’s architecture and parameters, fa-
cilitating the generation of adversarial examples. They first
define a loss function that may combine the classification
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Figure 2. Schematic representation of classic Task-Specific Attack (left) and proposed Task-Agnostic Attack (right).

Table 1. List of the VFMs considered in this work. The table
reports the SSL framework, the architecture, the number of pa-
rameters, and the dimensionality of the feature space.

Framework Architecture # Pars. (M) Dim.
DiNOv2 ViT-S/14
DiNO ViT-S/16 . 8
MSN
CAE .
DINOV2 ViT-B/14
DiNO 85 768
iBOT .
MAE ViT-B/16
MSN
CAE .
DINOV2 ViT-L/14
iBOT 303 1’024
MAE ViT-L/16
MSN
I-JEPA . ,
MAE ViT-H/14 630 1’280
DiNOv2 ViT-G/14 1’136 1’536
I-JEPA ViT-G/16 1’011 1’408

loss of the input w.r.t. the ground truth class and another
most likely class together with the distortion w.r.t. the orig-
inal image. The attack relies on the gradient of this loss
w.r.t. the input computed by backpropagation through the
model. The typical representatives of white-box attacks
include PGD [38], targeting a high Attack Success Rate
(ASR) within a given distortion budget, and DeepFool [42]
or CW [9] minimizing the distortion of a successful adver-
sarial example. Recent efforts in this area aim at improving
the speed of the attack [7, 45]. The black-box scenario lim-
its the attacker’s access to the output of the model, without
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knowledge of its internals. This category includes methods
such as RayS [12], SurFree [39], and CGBA [51].
Adversarial examples delude not only classifiers, but
also semantic segmentation and object detection [61], depth
estimation [64, 67], visual question answering [52], cap-
tioning [62], or retrieval [57] models. Note that each work
proposes an attack specific to the targeted application. The
core process is always the gradient computation but the def-
inition of the adversarial loss is driven by the application.
Since a vast majority of foundation models are open-
source, we investigate white-box scenarios with higher em-
phasis than black-box. At the same time, unlike traditional
attacks, our method aims to be universal across applications.

2.3. Attacks against Vision Foundation Models

It was shown that complementing classifiers with self-
supervision during training improves robustness [25]. An-
other study [15] confirms that many VFMs (BarlowTwins,
BYOL, SimCLR, SimSiam, SWAYV, and DiNO) inherit from
this fact a greater robustness against image corruptions. Ro-
bustness is here understood in the statistical point of view,
i.e., how the performance smoothly degrades as the distri-
bution shift increases. This does not encompass adversar-
ial examples crafted with the sole goal of damaging down-
stream performance.

On the contrary, DINO self-supervision does not im-
prove the security against adversarial example attacks com-
pared to traditional supervision in classification tasks [50].
To patch this vulnerability, some works propose to combine
self-supervision and adversarial training [25, 29].

All these works do not study the intrinsic vulnerabil-
ity of the VFM per se, but once used in a classification
task. One exception is the report [28] which designs an at-
tack such that adversarial examples are classified as Out-Of-
Distribution samples. Therefore, whatever the downstream
task, the system refuses to process them.

Our paper studies the security of VFM without assuming
any downstream task.



3. Definition of adversarial attacks

This section pinpoints the differences between TSAs and
TAAs as depicted in Fig. 2.

3.1. Classical Task-Specific Attacks

Let us consider a model composed by a VFM f4 with a
downstream task head gg. For a given input x,, let c,
9o(fs(x0)). The attacker defines two losses: L, (x;X,)
measuring the perceptual distance between an input x and
X,, and L.(c;c,) gauging how the task performed on x
differs from the result c,. For instance, for the classifica-
tion task, the result ¢, is a predicted class and L.(c; c,) =
p(co|x) — maxexe, p(c|x). Under a distortion budget con-
straint, the attack looks for the minimizer x, of L.(c;¢c,)
over {x : L, (x;%,) < €}, with c = go(f(x)). An alter-
native is to solve the dual problem, i.e. the attack looks
for the minimizer x, of £, (X;X,) under the constraint
Le(c;¢,) < e, with € = gg(fo(x)).

The adversarial example x, crucially depends on the
downstream task via functions gg and L.. This implies that
the attacker knows the downstream task head (white-box)
and that x, may not be adversarial for different tasks.

3.2. Proposed Task-Agnostic Attack

In contrast to TSAs, we target a new type of task-agnostic
attack when the downstream head or even the downstream
task are unknown. The objective is to forge pervasive ad-
versarial examples, i.e. jeopardizing a large spectrum of
downstream tasks. The proposed TAA aims at maximally
perturbing the features obtained from the VFM backbone.

Given a foundation model fy : X — Z, the features of
VEM are computed as z = f;(x) € Z. For a ViT, z may
represent any aggregating function of the output class and
patch tokens. We compute latent embeddings z; = fy(x;)
for some training samples {xj}j-V:Tl, which we use to com-
pute an empirical mean pu = NLT Zgjl z; which can be
used to center features extracted with the VFM as z = z— .

For a given input x,,, we denote z, = fy(x,) € Z. The
loss function is now defined in the feature space Z as:

L. (z;2,) = cos_sim(z, Z,). (D

We notice that features extracted from some founda-
tion models are not centered around the origin, making
the mean-centering process necessary to compute meaning-
ful cosine similarities. We report results without this pre-
processing step in supplementary material.

Again, two alternatives are 1) minimize £, (z;2,) un-
der the distortion budget constraint £, (x;%X,) < €, or 2)
minimize the distortion £, (x;X,) under an objective con-
straint £, (z;2,) < 7,. We prefer the first option as it eases
the fair comparison of the attacks by monitoring the Attack
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Success Rate for a given distortion budget e. Under a dis-
tortion budget constraint, the attack looks for the minimizer
x, of L, (x;x,) under the constraint £, (z;z,) < 7. Al-
gorithm | summarizes our method.

Algorithm 1 Task-Agnostic Attack

1: Input: x,: original image, {xj};-v:le training images,
fo: backbone model, e€5,: maximum per-pixel pertur-
bation, a: step size, N number of steps;
{ // Compute mean vector from set of images for cen-
tering. sg: stop gradient}
N N
{25}, 21 « {s9(fo(x))};24
N

B4 NLT D ke 2k
{ // initialize attack and target}
Xg — X,
Zo <= 58(f4(Xo)) — p
{// Run PGD in feature space using cos-sim}
fort=0,...,N —1do

Z f¢ (Xa) — MK

L, + cos_sim(z, Z,)

Xg ¢ Xq —a X Vx, L,
10: constraints

. a
: end for
12: Return: Attacked image x,

W

R

X,, {// impose constraints via e« }

Implementation We use Projected Gradient Descent
(PGD) [38] as our solver. We set the step size o = 0.0004,
the total number of optimization steps to 50, and €5 = 55=.
The adversarial tensors are then clipped and quantized to get
real adversarial images, which are stored in png format and
re-loaded for evaluation. This post-processing can result in
slightly higher or lower L, (x;x,) with respect to the target
7.. To carry out TAAs, we developed a highly customizable
PyTorch [44] code which comes with public pre-trained
SSL models used in this work. Source code is available
athttps://github.com/BrianPulfer/fsaa.

4. Experimental setup

Models Tab. I lists the models of the experimental setup.
For each model, we use its default normalization to convert
images to tensors.

Datasets and metrics for downstream tasks We use

popular datasets and metrics for each downstream task:

* Classification: Accuracy on PascalVOC [18] or Ima-
geNette [26]

* Segmentation: Mean Intersection over Union (mloU) on
PascalVOC [ 18]

* Visual Question Answering: Accuracy on VQAv2 [23]



* Image Captioning: BLEU-4, METEOR, ROUGE-L and
CIDEr scores on COCOCaptions [13]

* Image Retrieval: Mean Average Precision (mAP) on the
Revisited Oxford buildings dataset [47].

Metrics for attacks
Absolute efficiency: We measure the drop in perfor-
mance with the metrics and datasets mentioned above.
Relative efficiency: We define the relative efficiency n
of a TAA w.r.t. a downstream task as a percentage, where
0% indicates no impact on task accuracy, and 100% reflects
an impact equivalent to the respective TSA. Formally,

perf(TAA) — perf(No attack)

= 100
" % perf(TSA) — perf(No attack)’

2

where perf is a performance metric of the downstream task.
Image quality: For a fair comparison of the attacks,
we set a target Peak Signal-to-Noise Ratio PSNR

101og;0 225° with MSE = g7 [|%0 — X, |2, where x €
[0, 1]HXWX3 In experiments we set PSNR = 40 dB.

5. Experimental results on VFMs

5.1. Robustness vs. Security

Foundation models enable the generalisation of the down-
stream heads for many applications. Systems built on foun-
dation models demonstrate remarkable performance across
various downstream tasks under clean conditions. They
also enable great robustness against common editing trans-
formation such as flipping, blurring or JPEG compression.
The accuracy smoothly degrades as the shift between dis-
tributions of the training and testing data gets larger. This
motivates the analysis of the security level which would
have been useless if not robust first and foremost. Down-
stream heads are learned on the Pascal VOC training dataset
for classification and segmentation each while the model
backbone DiNOv2 ViT-S is kept frozen. Tab. 2 gauges the
robustness against common image processing and the se-
curity against Task-Specific Attacks over images from the
validation dataset and PSNR = 40 dB. For these two ap-
plications, the global system is clearly robust yet not secure
against a TSA.

5.2. TAA vs. TSA

With the identical setup as previously described, Tab. 4 pro-
vides a comparison of TAAs and TSAs. The conclusions are
clear: TSAs present a more effective attack approach com-
pared to TAAs when examining the performance impacts
on the targeted applications. Yet, TSAs exhibit limited per-
vasiveness. For example, the TSA directed at segmenta-
tion reduces the accuracy of the classification task only by
around half. In contrast, TAAs negatively impact both tasks
equally.
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Table 2. Classification and segmentation performance for a set of
distortions (robustness) and TSA (security).

Transform Classification Segmentation
clean performance 96.3 814
horizontal flip 95.9 81.3
vertical flip 87.9 61.0
wiener filter size = 21 95.7 76.6
blur kernel _size = 21 94.5 80.3
jpeg quality = 50 95.8 81.2
grayscale 96.3 81.3
rotation by 90° 88.5 65.7
resize to 98 x 98 88.5 61.3
brightness factor = 2 95.3 81.2
contrast factor = 2 95.8 80.9
hue factor = 0.5 95.9 81.1
Task-Specific Attack 0.0 11.8

Tab. 4 shows that TAAs can reach a minimum relative
efficiency of 80%. Notably, TAAs that compromise patch
tokens demonstrate near equivalent efficiency as TSAs.

5.3. Extending TAAs to other downstream tasks

Image retrieval: We measure the efficacy of TAAs for the
image retrieval task on the revisited Oxford dataset [47] us-
ing DiNOV2 backbones and a target PSNR of 40 dB. Tab. 3
reports the mean average precision. Interestingly, image re-
trieval capabilities do not improve beyond a ViT-L model,
yet, the adversarial robustness to TAAs does improve with a
larger ViT-G architecture. Still, all model performances are
severly degraded.

Table 3. mAP on the image retrieval with DiNOv2 on the R-
Oxford dataset. PSNR is set to 40 dB.

Model Difficulty CleanT TAA|
Easy 82.1
DINOV2 ViT-S  Medium 67.3
Hard 41.4
Easy 85.7
DiNOv2 ViT-B  Medium 71.7
Hard 49.4
Easy 87.9
DINOv2 ViT-L  Medium 74.4
Hard 53.1
Easy 85.2
DiINOvV2 ViT-G = Medium 72.9
Hard 52.3




Table 4. Absolute and relative efficiency (2) of attacks against classification and segmentation by two DiNOv2 models on PascalVOC
validation set. TAAs are more pervasive across tasks while TSAs are more harmful w.r.t. the targeted task. Target PSNR = 40 dB. The

arrow indicates the direction of success for attacker.

Backbone Attack Type Classification abs] (relf) Segmentation abs| (rel?)
No attack 96.3 (0%) 81.4 (0%)
Class token TAA 7.9 (92%) 19.2 (86%)
VIT-S Patch tokens TAA 0.1 (100%) 11.6 (97 %)
Class+patch tokens  TAA 2.0 (98%) 13.3 (94%)
Classification TSA 0.0 (100%) 19.8 (85%)
Segmentation TSA 40.6 (58%) 9.2 (100%)
No attack 97.0 (0%) 80.8 (0%)
Class token TAA 11.8 (88%) 23.5 (80%)
VITB Patch tokens TAA 0.0 (100%) 7.5 (102%)
Class + patch tokens TAA 2.1 (98%) 11.8 (96%)
Classification TSA 0.0 (100%) 14.1 (93%)
Segmentation TSA 43.9 (55%) 8.9 (100%)

Figure 3. Our TAA deludes Segment-Anything-Model [30]. Orig-
inal (left) and adversarial (right, PSNR = 40 dB) images.

Table 5. Accuracy in zero-shot classification on ImagenetV?2 for
CLIP model with PSNR = 40 dB.

No attack T TAA |

55.95 0.03
83.39 0.21

Top-1
Top-5

Zero-shot segmentation: In Fig. 3 the TAA targets the
patch tokens of the ViT-H encoder in the Segment Anything
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Model (SAM) [30], without relying on the prompt encoder
and mask decoder. It shows segmentation masks before and
after the attack with the same query (the green star point or
the bounding box).

Zero-shot classification: Recent Vision-Language Mod-
els (VLM) [6, 31, 32, 36, 59, 60, 63] combine a pre-trained
VFM as an image encoder together with a pre-trained lan-
guage model, the latter usually involving more parame-
ters and being computationally more demanding than the
former. TAAs on the VFM compromise performances of
VLMs without requiring computationally expensive evalu-
ation of the language model.

Tab. 5 reports how vulnerable is zero-shot classification
based on CLIP [49]. Our results are consistent with previ-
ous TSAs designed in [21, 40]. However, we show that this
lack of security holds true for TAA as well.

Image captioning and VQA: We run TAAs against
PaliGemma [6] to measure the drop in performance for im-
age captioning over the COCO validation set [13] and vi-
sual question answering over the VQAv2 dataset [1, 23]. In
both cases, we simply aim at maximally perturbing the fea-
ture representation obtained with SigLip, and do not make
use of the much larger Gemma [54, 55] language model.

Tab. 6 shows quantitative results illustrated with cap-
tioning examples in Fig. 4. For both downstream tasks, a
severe drop in performances occurs even with lower levels
of PSNR. Particularly, we record a higher drop in accuracy
for VQAV?2 for the less trivial other” category of questions,
and a dramatic drop in CIDEr on the captioning dataset.
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Three dogs on leashes sniffing
the ground near a fire hydrant.

A cat is eating a dead mouse
on a table.

A dog leaps high in the air to
catch a frishee.
we can see a hin.

In this image we can see a toy on
the surface. In the background,

A person standing on a
skateboard on a sidewalk.

A dog is riding a boat
in the water

Two black swans swimming
in a pond.

In this image we can see some
objects on the surface. In the
background, we can see the
wall.

Figure 4. Examples of regular (left) and adversarial (right) captions obtained with TAAs attacking the VFM of PaliGemma. PSNR is 40

dB.

Table 6. TAAs against the SigLip VEM of the PaliGemma VLM. Impact on captioning and question answering. For all metrics, lower
values mean more harmful attack. Drop in performance is measured for increasingly stronger perturbations.

Attack Captioning COCO Question answering VQAv2
PSNR BLEU-4| METEOR| ROUGE-L| CIDEr| | number| yes/no] other|
No attack 29.6 30.3 59.0 131.4 72.5 95.9 76.9
45 dB 5.8 17.3 32.2 33.0 50.6 83.4 534
40 dB 3.8 13.6 27.2 16.4 38.7 76.0 41.6
35dB 1.9 9.7 22.3 3.6 25.6 67.5 28.5

6. Results on transferability between models

So far, TAAs targeted a given VEM in a white-box scenario.
This section extends the attack surface to the black-box sce-
nario. In the adversarial example literature, transferability
attacks are sometimes efficient to delude an unknown clas-
sifier. Our setup takes the same spirit. The attacker mounts
the TAA against this white-box source model in the hope
that this adversarial example also deludes the application
based on the black-box target VFM.

6.1. Transferability across VFM backbones

For all backbones, a downstream head is trained for classi-
fication and semantic segmentation. For classification, we
train linear heads on the ImageNet train set, but we evaluate
attacks on the smaller Imagenette dataset [26]. For semantic
segmentation, we concatenate the CLS token to every patch
token along the feature dimension and use bi-cubic inter-
polation followed by a 2-dimensional convolution to obtain
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predictions for the original image size. Again, TSAs use the
trained heads whereas TAAs do not.

Fig. 5 presents the relative efficiency as defined in
Eq. (2) for TAA compared to TSA, averaged across the
two proposed tasks. TAA demonstrates near equivalent ef-
ficiency to TSA, affirming its effectiveness even without
downstream task knowledge. TAAs are more successful
against smaller models, and we attribute this to the lower
dimensionality of the feature space. Both TSA and TAA ex-
hibit moderate transferability across different models, with
DINO and MSN being the most susceptible to transfer ef-
fects. However, this transferability is rare and lacks a clear
pattern that would explain why it occurs specifically be-
tween these models. Furthermore, transferability tends to
be more likely when both source and target models belong
to the same pre-training framework but differ in size. Even
within these model families, however, transfer is not guar-
anteed and remains inconsistent. Different solvers and per-
turbation budget are reported in supplementary material.
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Figure 5. Comparison of relative efficiency (2) of TAAs (right) with respect to TSAs (left) averaged over classification and semantic
segmentation tasks. TAAs perform comparably to TSAs across models and tasks.

6.2. Transferability to fine-tuned VFMs

While it is rare for practitioners to pre-train a VFM, it is
common practice nowadays to fine-tune an existing open-
source VEM for a specific task. Parameter efficient fine-
tuning techniques such as LoRA and variants [17, 27, 35]
have become increasingly popular, as they usually represent
a more convenient solution compared to full fine-tuning.
Learning more about the degree of transferability of TSAs
and TA As crafted on the publicly available foundation mod-
els to their fine-tuned versions is crucial to better understand
and design safer machine learning systems. To this end, we
fully fine-tuned and LoRA fine-tuned three VFMs on classi-
fication for ImageNet. LoRA fine-tuning creates query and
value matrices adapters in self-attention layers with rank
r = 8, and enforces a dropout of 0.1 during training.

Tab. 7 highlights classification accuracies against TSAs
and TAAs using the original VFM as the source model to at-
tack the fine-tuned target model. A LoRA-based fine-tuning
is not sufficient to defend against either TSAs or TAAs,
however, the effectiveness of attacks against fully fine-tuned
VFMs and downstream heads is greatly reduced.

7. Conclusion

This work investigates the robustness and security of the
currently most popular pre-trained SSL vision foundation
models. It introduces a family of adversarial example at-
tacks that is task-agnostic and exploits publicly available
foundation models to craft adversarial attacks that maxi-
mally perturb their feature representation.

Firstly, we find that a TAA performs comparably to its
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Table 7. Classification accuracy over ImageNette for fine-tuned
models and transferable Task-Specific / Task-Agnostic Attacks.

Attack Backbone NoFT LoRAFT Full FT

TSA DiNOv2 4.4 5.0 92.0
TSA MAE 59 6.1 77.1
TSA MSN 5.1 6.0 75.7

TSA counterpart, while transfering better to other tasks.
Secondly, we show that TAAs are capable of disrupting
classification, semantic segmentation, zero-shot classifica-
tion, image captioning, visual question answering, and im-
age retrieval systems. Finally, when it comes to transferabil-
ity across different or fully fine-tuned models, we observe
low transferability for both TSAs and TAAs, however, we
find that fine-tuning through low rank adapters does not pro-
tect from attacks crafted on the non-tuned publicly available
model.

This research aims to enhance Al security by identify-
ing vulnerabilities, promoting defenses that protect models
in open-source environments: (i) Awareness for Acceler-
ated Defense. By sharing these findings, we aim to drive
proactive research on defenses, reducing potential risks;
(i) Limited Risk Scope. Our attack lacks resilience to
transformations (e.g., resizing, flipping), limiting its real-
world impact; (iii) Potential Defensive Strategies. Ad-
versarial security can be achieved through adversarial train-
ing [25, 29, 46] or could be incorporated ad hoc [10].
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