
Appendix

A. Computational Resources

The evaluations of open-source MLLMs were conducted on
a single A100 GPU with 40GB of RAM, which required
approximately 200 hours on our university-wide comput-
ing infrastructure. To evaluate GPT-4V/GPT-4o, which are
closed-source, we used the paid ChatGPT API provided by
OpenAI and spent $922 for GPT-4V and $451 for GPT-4o,
including runs to tune prompts.

B. Additional Dataset Details

In this section, we present additional dataset details.

B.1. TallyQA

The counting questions in TallyQA are classified into com-
plex and simple counting questions [2]. Simple counting
questions were imported from existing datasets like VQA2
and Visual Genome. Complex questions were collected
using Amazon Mechanical Turk (AMT) to gather 19,500
complex questions for 17,545 unique images. The images
were sourced from both COCO and Visual Genome to ensure
variety. The testing set of TallyQA contains 38,589 ques-
tions, which is a reasonable size. Therefore, we evaluated
models on the entire original test set. The distribution of
unique answers is given in Table 5. TallyQA is provided
under the terms of the Apache License Version 2.0, January
2004: http://www.apache.org/licenses/

Table 5. The distribution of unique answers in TallyQA.

Answer Complex Simple
zero 4335 637
one 6853 12308
two 2479 5636
three 901 2034
four 453 1101
five 195 435
six 133 319
seven 70 152
eight 69 145
nine 31 84
ten 33 48
eleven 12 30
twelve 25 33
thirteen 7 13
fourteen 6 9
fifteen 6 7

B.2. VQDv1
VQDv1 [3] was created synthetically using annotations from
Visual Genome, COCO, and COCO Panoptic. This syn-
thetic generation approach helps combat certain biases. The
queries are generated using multiple templates for each type,
allowing for diverse queries. The annotations used to gen-
erate these questions are derived from a combination of
COCO’s object annotations and Visual Genome’s attribute
and relationship information.

For VQDv1, almost 90% of the queries have less than
two ground truth bounding boxes. In our subset, we re-
tained all queries with more than one ground truth bounding
box, and we sampled 10% of the queries with zero or one
ground truth bounding box. Table 6 provides the distri-
bution of ground truth boxes across queries. The VQDv1
dataset is provided under the terms of the Creative Commons
Attribution 4.0 International (CC BY 4.0) license: https:
//creativecommons.org/licenses/by/4.0/legalcode

B.3. DVQA
The DVQA dataset was created by synthetically generating
bar charts to test multiple aspects of bar chart understanding.
This automatic generation process allows precise control
over the visual elements’ positions and appearances, and
provides access to meta-data about the elements in the image,
which is not available with real data [15].

The original version of DVQA had two test sets: Test-
Familiar and Test-Novel. The critical difference between
these two sets is that every bar chart in Test-Familiar has
labels in DVQA’s training set, whereas Test-Novel does not.
Given that we are conducting zero-shot evaluations, these
two sets can be treated equivalently. Therefore, we sample
the same number of questions from both. Table 7 shows the
question distributions of our subset version of DVQA. The
DVQA dataset is provided under the terms of the Creative
Commons Attribution 4.0 International (CC BY 4.0): https:
//creativecommons.org/licenses/by/4.0/legalcode

B.4. TDIUC
The TDIUC dataset was created by incorporating questions
from three sources: existing datasets, questions generated
based on image annotations, and human annotators. Ques-
tions were imported from COCO-VQA and Visual Genome
datasets, with templates and regular expressions used to
classify and generate questions[14]. Additionally, ques-
tions were generated using COCO’s semantic segmenta-
tion annotations and Visual Genome’s objects and attribute
annotations[14]. For certain question types like sentiment un-
derstanding and object utility/affordance, trained volunteers
performed manual annotation using a web-based tool[14].
We sample proportionately from 12 question types in TDIUC.
Table 8 shows our subset of TDIUC question distributions.
TDIUC is a public dataset but does not mention a particular

http://www.apache.org/licenses/
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode

Table 6. Bounding box distribution for the original and modified versions of VQDv1.

Bounding Box Count Original Version Our Version
0 80025 (42.08%) 8001 (21.59%)
1 90101 (47.38%) 9008 (24.31%)
2 10127 (5.33%) 10127 (27.33%)
3 3200 (1.68%) 3200 (8.64%)
4 1894 (1.00%) 1894 (5.11%)
5 1334 (0.70%) 1334 (3.60%)
6 700 (0.37%) 700 (1.89%)
7 533 (0.28%) 533 (1.44%)
8 366 (0.19%) 366 (0.99%)
9 305 (0.16%) 305 (0.82%)

10 276 (0.15%) 276 (0.74%)
11 193 (0.10%) 193 (0.52%)
12 194 (0.10%) 194 (0.52%)
13 255 (0.13%) 255 (0.69%)
14 618 (0.32%) 618 (1.67%)
15 26 (0.01%) 26 (0.07%)
16 5 (0.00%) 5 (0.01%)
17 7 (0.00%) 7 (0.02%)
18 7 (0.00%) 7 (0.02%)
19 3 (0.00%) 3 (0.01%)
20 1 (0.00%) 1 (0.00%)
23 2 (0.00%) 2 (0.01%)
25 1 (0.00%) 1 (0.00%)
26 1 (0.00%) 1 (0.00%)

Table 7. Distribution of question types in DVQA.

Question Type Test-Familiar Version Test-Novel Version Our Version
Data 185356 (31.93%) 185452 (31.90%) 9269 (31.91%)
Reasoning 316923 (54.59%) 316881 (54.51%) 15844 (54.55%)
Structure 78278 (13.48%) 78988 (13.59%) 3930 (13.53%)

license: https://kushalkafle.com/projects/tdiuc.
html

C. Creating “Slim” Evaluation Sets
We evaluate MLLMs on the entire validation set of Tal-
lyQA, which contains 38,589 questions. However, the other
datasets are much larger, which makes it challenging to
quickly and inexpensively evaluate MLLMs on them. To
address this, we sample subsets from these datasets for
evaluation. A uniform random sampling is suboptimal as
these datasets have long-tailed distributions and sampling
uniformly would result in discarding examples from the
tail. Therefore, we adopt a stratified sampling approach for
DVQA and TDIUC, where we also maintain as much an-
swer variety as possible. Specifically, we first categorize the
questions into fine-grained groups, defined by both the pre-
defined types in the datasets (e.g., question types or difficulty

levels) and their corresponding answers. We define r as the
sampling ratio and k as the minimum number of samples
from each group. For any large group, we uniformly sample
an r proportion of the entries. For smaller groups, if the size
m is such that m · r is less than k, we sample k entries. For
groups even smaller than k, we use the entire group. The
number of samples m→ to be taken from group |gi| = m can
be represented as follows:

m→
i =

mi if mi → k

k if mi · r < k ↑mi > k

↓mi · r↔ if mi · r ↗ k

VQDv1 has a long-tail distribution regarding the num-
ber of bounding boxes per query, where queries with 0 or
1 box comprise almost 90% of the dataset. Our goal is to
evaluate the MLLM’s ability to generate a variable number

https://kushalkafle.com/projects/tdiuc.html
https://kushalkafle.com/projects/tdiuc.html

Table 8. Distribution of question types in TDIUC.

Question Type Original Version Our Version
Absurd 120411 (22.35%) 6844 (25.00%)
Activity Recognition 2682 (0.50%) 77 (0.28%)
Attribute 9200 (1.71%) 296 (1.08%)
Color 62490 (11.60%) 2142 (7.82%)
Counting 52905 (9.82%) 2262 (8.26%)
Object Presence 215324 (39.96%) 11884 (43.41%)
Object Recognition 30693 (5.70%) 1646 (6.01%)
Positional Reasoning 12284 (2.28%) 523 (1.91%)
Scene Recognition 22032 (4.09%) 1188 (4.34%)
Sentiment Understanding 634 (0.12%) 27 (0.10%)
Sport Recognition 10042 (1.86%) 478 (1.75%)
Utility Affordance 171 (0.03%) 12 (0.04%)

of bounding boxes – extending the evaluation scope beyond
traditional referring expression comprehension datasets such
as RefCOCO [27], where all referring expressions are asso-
ciated with only one bounding box. Therefore, we retained
all the questions with more than one bounding box and ran-
domly sampled queries corresponding to 0 or 1 bounding
box. As seen in Table 6, this method effectively increases
the ratio of questions with multiple bounding boxes.

Our sampling method preserves the most challenges sam-
ples present in the original dataset, ensuring a comprehen-
sive evaluation while significantly reducing computational
overhead. Summary statistics for the datasets are given in
Table 9.

D. Prompt Engineering
To make the model performance comparison as fair as pos-
sible, we endeavored to keep the prompts consistent across
different models. However, this was challenging due to vari-
ations in the models’ ability to process the prompts. For
example, BLIP2 and iBLIP failed when prompted to answer
using a template such as “My answer is ¡answer¿.” Inspired
by Liu et al. [23], for TDIUC, DVQA, and TallyQA, we
prompt the models to answer as concisely as possible instead
of asking them to generate entire sentences. These prompts
are given in Fig. 4.

Figure 4. Prompts used for TallyQA, DVQA, and TDIUC.

• TallyQA: Please answer the question in one word.
• DVQA: Please answer the question in one word
• TDIUC: Please answer in one word. Answer ‘does-

notapply’ if the question is not related to the image
or cannot be answered.

Despite much effort, for VQDv1, we were unable to iden-

tify a universal prompt for generating multiple bounding
boxes that worked well across models. For example, as
shown in Table 10, LLaVA (7B) repeatedly generated the
same bounding boxes until the maximum token limit was
reached when this prompt was used. We believe this occurs
because the model is confused by the instruction to gener-
ate multiple bounding boxes, even when only one object is
detected. This may explain why it repeatedly generates the
same bounding box. While we considered non-maximal sup-
pression or eliminating redundant boxes, our goal is to fairly
evaluate MLLMs without excessively post-processing their
outputs. Therefore, we fine-tuned the prompts for different
models. The results reported in the paper represent the best
outcomes from our evaluations. The best-identified prompts
for each model on VQDv1 are given in Table 11.

E. Model Details
In this paper, all the open source MLLMs are loaded directly
from HuggingFace, the detail models are below:

GPT-4v/4o are not open sourced, therefore we are un-
able to identify the models. We utilize the API released by
OpenAI to evaluate four datasets on GPT-4v/4o.

F. Additional Evaluation Details
Root Mean Squared Error (RMSE) Computation. For
TallyQA, besides Micro and Macro Accuracy, we also com-
pute RMSE. However, we observed that due to the unpre-
dictability of the MLLMs, the models occasionally output
unreasonably large numbers as their predicted object counts.
For instance, LLaVA-NeXT predicts an unreasonably large
object count of 150 for one of the questions. Such out-
liers significantly inflate the models’ overall average RMSE
across all questions. As shown in the distribution of TallyQA
questions, all counting numbers are between 0 and 15. There-
fore, we apply a simple cutoff technique: an upper bound of

Table 9. Summary statistics for the VQA and VQD datasets we study.

Dataset Name # of Categories # of Unique Answers Original Size Sampled Size

TDIUC [14] 12 562 538,868 27,336
TallyQA [2] 2 16 38,589 38,589
DVQA [15] 3 2113 580,557 29,025
VQDv1 [3] 5 24 190,174 37,057

Table 10. LLaVA (7B) struggled with some prompts for VQDv1.

Prompt with Query Where is the motorcycle? Instruction: Generate a list of bounding box
coordinates around the objects that the prompt mentioned if they
exist in the image. Even if the question uses a singular verb like ‘is’,
you should still generate multiple bounding boxes if there are
multiple objects that satisfy the prompt. The bounding box list
should be in the following format: [[x min, y min, x max, y max],
[x min, y min, x max, y max]]

LLaVA (7B) predicted answer: “[[0.01, 0.0, 0.28, 0.24], [0.01, 0.0, 0.28, 0.24], [0.01,
0.0, 0.28, 0.24], [0.01, 0.0, 0.28, 0.24], [0.01, 0.0, 0.28, 0.24], [0.01, 0.0,
0.28, 0.24], [0.01, 0.0, 0.28, 0.24], [0.01, 0.0, 0.28, 0.24], [0.01, 0.0,
0.28, 0.24], [0.01, 0.0, 0.28, 0.24], [0.01, 0.0, 0.28, 0.24], [0.01, 0.0,
0.28, 0.24], [0.01, 0.0, 0.28, 0.24], [0.01, 0.0, 0.28, 0.24], [0.01, 0.0,
0.28, 0.24], [0.01, 0.0, 0.28, 0.24], [0.01, 0.0, 0.28, 0.24], [0.01, 0.0,
0.28, 0.24], [0.01, 0.0, 0.28, 0.24], [0.01, 0.0, 0.28, 0.24], [0.01, 0.0,
0.28, 0.24], [0.01, 0.0, 0.28, 0.24], [0.01, 0.0, 0.28, 0.24], [0.01,”

15 and a lower bound of 0 is applied to all predicted counts.
This adjustment ensures that the RMSE remains meaningful
and useful for analysis.

Match Answer with Ground Truth. For TallyQA, the
model is tasked with generating object counts. If the model
correspondingly generates a number enclosed within a string,
such as ”2”, we directly convert it to int type by type conver-
sion. For the case where the model generates a word, we map
the word to its corresponding number using the mappings
shown in table 5. Occasionally, the model generates answers
that, while not numerical, still make sense. For example, the
model might generate ’none’ or ’no,’ which we interpret as
zero. We manually account for these cases and add addi-
tional mappings accordingly. While we acknowledge that
even with these steps, we may still miss some unpredictable
answers from the models, such as when the model responds
with ’a few,’ which is completely uninterpretable, we map
these to None.

In datasets like TallyQA, DVQA, and VQDv1, synony-
mous answers are rarely an issue due to the specific nature
of each task. For example, TallyQA typically expects numer-
ical answers that are definitive and unambiguous (numbers
seldom have synonyms). The main exception is when ’none,’
’no,’ and ’zero’ are all interpreted as 0. In DVQA, which
focuses on chart understanding, questions such as ’Which
bar has the highest number?’ require the model to read and

Word Number Word Number Word Number
zero 0 four 4 eight 8
none 0 five 5 nine 9
no 0 six 6 ten 10
one 1 seven 7 eleven 11
two 2 twelve 12 fourteen 14

three 3 thirteen 13 fifteen 15

Figure 5. Mapping of words to numbers in TallyQA

provide the exact text from the graph, minimizing the possi-
bility of synonymous answers. Similarly, VQDv1 involves
generating bounding boxes and computing the Intersection
over Union (IoU) to determine if the ground truth is cor-
rectly matched. The evaluation uses Recall and Precision
metrics, which are not binary and therefore do not penalize
synonymous answers.

In contrast, tasks in TDIUC are more likely to involve
more interpretative answers. For example, the answers
’phone’ and ’telephone’ should be considered semantically
similar and should both be acceptable if the ground truth is
one of them. To minimize penalizing synonymous answers
like the case above, we leverage WordNet[32], a lexical
database for the English language that is specifically de-
signed for natural language processing. Specifically, we
retrieve the sets of synonyms for each word from WordNet
(using the synsets function) and compare these sets. If there

Table 11. The best identified VQDv1 prompts for each model.

Model Prompt
GPT-4o/GPT-4V Generate a list of bounding box coordinates around the objects

mentioned in the prompt if they exist in the image. Even if the
prompt uses a singular verb like ‘is’, generate multiple bounding
boxes if multiple objects satisfy the query. The bounding box
list should be formatted as: [[x min, y min, x max, y max]], and
it can contain zero or more bounding boxes. Only provide the
bounding box list, without any additional descriptions.

LLaVA-NeXT Please generate a list of bounding boxes coordinates
of the region this query describes. Use the format
[[x min,y min,x max,y max]....]. Do not respond in sentences,
and only generate the bounding boxes. Respond with an empty
list [[]], if no such region exists in the image.

LLaVA (7B)/(13B) Please answer the question by generating a list of bounding box
coordinates around the objects the question is asking, and if no
such object exists in the image, answer: [[]]

Table 12. MLLM Model Repository Paths

Model Repository Path
LLaVA-NeXT llava-hf/llava-v1.6-mistral-7b-hf
InstructBlip Salesforce/instructblip-flan-t5-xxl
BLIP2 Salesforce/blip2-flan-t5-xl
LLaVA1.5-7b llava-hf/llava-1.5-7b-hf
LLaVA1.5-13b llava-hf/llava-1.5-13b-hf

is any overlap in the synsets, two words are considered syn-
onyms, and we use this to evaluate if the predicted word(s)
matches the ground truth(s).

G. Other Related Efforts and Limitations
Related Efforts to Improve MLLM Evaluation. Recent
works highlight challenges in evaluating MLLMs. In [36],
the ARO benchmark was introduced to assess models’ un-
derstanding of complex compositional elements, and models
evaluated on it performed poorly for like “the grass is eating
the horse” versus “the horse is eating grass.” Similarly, the
Winoground datasets [31] require models to match images
with captions that use identical words in different orders to
assess their comprehension of linguistic composition con-
cerning visual information. In [29], a cycle-consistency
framework is proposed, evaluating models’ ability to under-
stand semantically similar questions. These studies comple-
ment ours and reveal other biases and limitations in MLLMs.

Limitations. One significant challenge we encountered
was effectively prompting the models (see Appendices D
and H.2). The performance of MLLMs is susceptible to
the phrasing and structure of prompts, with small changes
leading to significant variations in outputs. Crafting prompts

that balance complexity and clarity is difficult, especially
given the diversity of tasks and datasets. Additionally, no
standardized approach to prompt engineering across different
models complicates fair comparisons. We experimented
with various formulations to find effective prompts, but our
approach may still have limitations. Future work should
focus on developing systematic and standardized methods for
prompt engineering to ensure consistent and fair evaluations.

H. Additional Results
H.1. TallyQA
For TallyQA, we found that the performance of most models
decreases as the correct number to output increases, as shown
in Figs. 6a and 6b. Across counts, models perform much
better at answering simple questions than complex questions.

H.2. VQDv1
Alternative Prompts. All models performed poorly on
VQDv1. As mentioned earlier, it was challenging to identify
the best prompt for each model. We hypothesized that given
the verbosity of GPT-4o, it would benefit from being allowed
to provide more extended responses where it reasons ‘aloud.’

(a) Simple counting questions in TallyQA. (b) Complex counting questions in TallyQA.

Figure 6. Accuracy as a function of the correct answer for simple and complex counting questions in TallyQA.

However, this performed worse than the prompts used in our
main results. In Table 13, we provide alternative prompts
that we tried, where the results are given in Table 14.
Qualitative Examples. Among all the datasets we evalu-
ated, all models consistently performed poorly on VQDv1.
Consequently, we provide qualitative examples from VQDv1
in the figures below, using the prompts employed in our main
results. These visualizations demonstrate the challenges
models face when required to detect multiple objects.

Table 13. Alternative prompts studied for VQDv1.

Model Prompt
GPT-4o Please generate a list of bounding boxes coordinates for re-

gions that match what is described in the query. Bounding
boxes should use the format: [[x min,y min,x max,y max], ..],
where (x min,y min) is top left coordinate,(x max,y max) is
bottom right coordinate. If there are no objects in the image
that the query describes, please respond with an empty list.
You can explain your answers if necessary, but end your re-
sponse with the format: The bounding boxes coordinates are
¡box¿[[x min,y min,x max,y max],..,..]¡box¿.̈ Please keep the
special token ¡box¿ in your response.

LLaVA-NeXT Generate a list of bounding box coordinates around the objects
mentioned in the query, if they exist in the image. Even if the
query uses a singular verb like ‘is’, generate multiple bounding
boxes if multiple objects satisfy the query. The bounding box
list should be formatted as: [[x min, y min, x max, y max]], and
it can contain zero or more bounding boxes. Only provide the
bounding box list, without any additional descriptions.

LLaVA (7B)/(13B) Generate a list of bounding box coordinates around the objects
that the prompt mentioned if they exist in the image. Even if
the query uses a singular verb like ‘is’, you should still generate
multiple bounding boxes if multiple objects satisfy the prompt.
The bounding box list should be in the following format: [[x min,
y min, x max, y max], [x min,y min, x max, y max]].

Table 14. MLLM performance on VQDv1 using the alternative prompts from Table 13.

Model LLaVA (7B) LLaVA (13B) LLaVA-NeXT GPT-4o

Micro F1 4.27% 8.90% 14.66% 23.81%

	Introduction
	Multi-modal Large Language Models
	Experiments
	Visual Query Detection with VQDv1
	Fine-Grained VQA Assessment with TDIUC
	Assessing Counting Ability with TallyQA
	Assessing Chart Comprehension with DVQA
	Analyzing the Strengths and Weaknesses of Today's MLLMs
	Inferences on Capabilities of MLLMs
	Open vs Closed source models
	Model Scale & Image Resolution

	Related Work
	Discussion
	Conclusions
	Computational Resources
	Additional Dataset Details
	TallyQA
	VQDv1
	DVQA
	TDIUC

	Creating ``Slim'' Evaluation Sets
	Prompt Engineering
	Model Details
	Additional Evaluation Details
	Other Related Efforts and Limitations
	Additional Results
	TallyQA
	VQDv1

