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Abstract

Despite extensive research since the community learned
about adversarial examples 10 years ago, we still do not
know how to train high-accuracy classifiers that are guar-
anteed to be robust to small perturbations of their inputs.
Previous works often argued that this might be because
no classifier exists that is robust and accurate at the same
time. However, in computer vision this assumption does not
match reality where humans are usually accurate and robust
on most tasks of interest. We offer an alternative explana-
tion and show that in certain settings robust generalization
is only possible with unrealistically large amounts of data.
Specifically, we find a setting where a robust classifier ex-
ists, it is easy to learn an accurate classifier, yet it requires
an exponential amount of data to learn a robust classifier.
Based on this theoretical result, we evaluate the influence
of the amount of training data on datasets such as CIFAR-
10. Our findings indicate that the the amount of training
data is the main factor determining the robust performance.
Furthermore we show that that there are low magnitude di-
rections in the data which are useful for non-robust gener-
alization but are not available for robust classifiers. This
implies that robust classification is a strictly harder tasks
than normal classification, thereby providing an explana-
tion why robust classification requires more data.

1. Introduction
Deep learning has proven useful in numerous computer vi-

sion tasks, however, there are still shortcomings that come

with these large end-to-end trained models. In particular,

most state-of-the-art models suffer from adversarial exam-

ples [36], which are tiny perturbations of the input that can

result in large changes to the output of such models. This

phenomenon can negatively affect the trust of users in the

models, it might constitute a security issue, and –because

it contradicts human experience– it makes it impossible to

create faithfully interpretable models.

Research on mitigation strategies has concentrated on

three pillars: In adversarial training [15, 36] adversarial

examples are created during training and the models are

trained to classify those examples correctly. This procedure

makes it harder to find adversarial examples, however, it

cannot guarantee that no adversarial examples exist. In con-

trast, randomized smoothing [10] acts at prediction time. It

mitigates the effect of adversarial inputs by repeatedly eval-

uating the network, each time with different noise added to

the input. It then constructs a final prediction by combining

the predictions, by a majority vote. This construction pro-

vides probabilistic robustness guarantees, however, usually

several thousand predictions need to be performed for each

input, which results in an undesirable slowdown. Finally,

Lipschitz networks [9] prevent adversarial examples by con-

straining the network architecture such that only models

with a small Lipschitz constant (typically equal to 1) can be

learned. As a consequence, any input perturbation cannot

cause a change in the network’s output of larger magnitude

than the perturbation itself, which yields deterministic and

overhead-free guarantees on the presence of adversarial ex-

amples for any given input. This makes Lipschitz networks

currently the most practical method for robust learning with

guarantees.

Unfortunately, despite many years of research, robust

networks still achieve results far worse than what one might

hope for. Even on fairly simple datasets and for fairly

small perturbations the robust accuracy is much worse than

what we believe is possible. Furthermore, a recent large

study [31] indicated that even architectures and training

techniques that differ strongly in terms of their memory

and computational demands, ultimately achieve quite sim-

ilar robust accuracy values. This suggests the presence of

a more fundamental barrier for the development of robust

networks. Several explanations of this phenomenon have

been put forward. For example, it has been suggested that

there might be a natural trade-off between robustness and

accuracy [37]: this would imply that high robust accuracy

is just impossible to achieve. Alternatively, the hypothesis

has been put forward that robust networks are not expres-

sive enough [14, 26] or that the computational overhead of
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training robust network is the limiting factor [7, 12]. At the

same time, there exist also recent works that do report that

higher robust accuracy is achievable if additional training
data is exploited [1, 16, 18, 19, 40]. This would suggest

that the problem is fundamentally one of generalization.

Overall, however, we still lack a solid understanding

of what makes the task of robust classification difficult.

Our main contributions in this work are three insights that

we hope will clear up some misconceptions and hopefully

guide future research on training robust networks in new

directions.

Insight 1: There are settings in which learning robust ac-
curate classifiers requires much more data than learning
just accurate classifiers. Specifically, we present a learn-

ing problem in which any learning algorithm requires an

amount of training data exponential in the data dimension,

otherwise it cannot learn a robust classifier that is better than

chance level. Our construction is based on the fact that non-

robust classifiers are able to exploit low-magnitude features

in the data, while robust classifiers have to rely on high-

magnitude features. The exponential gap between robust

and non-robust learning opens up when the former general-

ize well but the latter ones do not.

Insight 2: Also on real data, the amount of data is a ma-
jor determinant of performance. We provide evidence

that the problem of Insight 1 is not just theoretical, but hap-

pens in (less drastic) form also for real datasets. Specifi-

cally, for MNIST, CIFAR-10 and CIFAR-100 we demon-

strate that increasing the size of the training data reliably

increases robust performance. We further show that linear

subspaces of the input space exist that only contain a tiny

amount of the variance of the data, so those directions can-

not be used for robust classification. However, when pro-

jecting our data into those subspaces, we can still obtain

great (non-robust) accuracy. This implies that enforcing ro-

bustness makes classification a strictly hard task on CIFAR-

10, providing an explanation why robust classification re-

quires more data.

Insight 3: Robust architectures can fit and generalize
non-robustly. Training robust models requires certain ar-

chitectural choices that are different from standard net-

works. We show that this is not the reason for the lack

of performance on test data. Architectures built for robust

classification are expressive enough to robustly overfit the

training data, and we can also learn classifiers that gener-

alize well, we just struggle to learn robust classifiers that

generalize well.

We believe these insights show how important the

amount of training data is for robust classification. In the

remainder of the paper, we state our insights more formally

and report in detail on our theoretical and empirical find-

ings.

2. Background & notation

2.1. Accuracy and Robust Accuracy

Traditionally, in machine learning, our goal is to maximize

the accuracy of a classifier f . For a training or test set S =
{(x1, y1), . . . , (xn, yn)} it is given by

acc(f) =
1

n

n∑
i=1

�

[
f(xi) = yi

]
. (1)

In contrast, in this paper we consider the accuracy on adver-

sarial altered inputs. We want our classifiers to predict the

correct class, even when an adversary is allowed to change

the input by a small amount. In order to measure perfor-

mance in this setting, we define the robust accuracy of mar-

gin ε as

RA(f) =
1

n

n∑
i=1

�

[
f(x̃) = yi ∀x̃ : ‖x̃− xi‖2 � ε

]
(2)

Generally, computing a network’s robust accuracy is NP-

hard [39], and even approximations are hard to obtain [22].

Therefore, we usually put certain constraints on the clas-

sifier f . In this work, we will usually choose f to be a

1-Lipschitz classifier.

We define a 1-Lipschitz classifier to be a function of the

form

f(x) = argmax
i=1,...,k

[g(x)]i, (3)

where g is a 1-Lipschitz function with k-dimensional out-

puts and [·]i denotes the i-th component of a vector. Here, a

function, layer or network f is 1-Lipschitz if

‖f(x)− f(y)‖2 � ‖x− y‖2 (4)

for all x, y, where ‖ · ‖2 denotes the Euclidean norm.

Tsuzuku et al. [38] proved that with 1-Lipschitz classi-

fier, we can easily compute a robustness guarantee. For a 1-

Lipschitz function g, and the classifier f as defined in Equa-

tion (3), we have that the robust accuracy (Equation (2)) is

bounded below by the certified robust accuracy, which we

define as CRA(f) =

1

n

n∑
i=1

�

[
[g(xi)]yi > max

c �=yi

[g(xi)]c +
√
2ε
]
. (5)

Therefore, in this work we will use CRA as an efficient,

yet conservative, proxy for a network’s actual robust accu-

racy. Unless specified otherwise, we will use a perturbation

radius ε = 36/255, as it is common in the literature.
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2.2. 1-Lipschitz networks

In order to train a 1-Lipschitz classifiers, we require a way

of parameterizing the 1-Lipschitz function g. We do this

by parameterizing g as a neural network, where every layer

has the 1-Lipschitz property. There are many ways of cre-

ating 1-Lipschitz linear layers, in this work we will use two

rescaling-based layers: AOL [29] and CPL [24]. For details

about those methods, see e.g. [31].

3. Robust classification needs more data
We start our discussion by two observations. First, deep

learning has been so successful for many classical computer

vision tasks that it has become a routine task to train clas-

sifiers on a training dataset in a way so that the classifier

also performs well on unseen test data afterwards. Second,

for many such tasks, classifiers of high robust accuracy are

provably possible. Namely, the human visual system pro-

vides proof for this, as human perception is typically not

just highly accurate (we use it to generate the “ground truth”

of our datasets), but also robust, in the sense that it is unaf-

fected by small perturbations of its input.

It is tempting to assume that those two observations

(classifiers learned from data generalize well, and high-

accuracy robust classifiers do exist) imply that it is also pos-

sible to learn a high-accuracy robust classifier. However, in

the following we show that this conclusion does not hold.

Informally, we show that for any dataset size there exists a

family of data distributions such that robust classification is

possible, learning an accurate classifiers is easy, but learn-

ing an accurate robust classifier is impossible.

Our result is formalized in the following Theorem.

Theorem 1 (No Free Robustness). For any dataset size n
there exists a family, F , of binary classification problems
such that the following 3 properties hold:
1. For any D ∈ F , there exists a classifier with 100% ro-

bust accuracy.
2. There is a learning algorithm that for any D ∈ F and

S ∼ D finds a (linear) classifier with 100% test accu-
racy.

3. For any learning algorithm, L, on average over D ∈
F and S

i.i.d.∼ D, the learned classifier L(S) achieves
robust accuracy less than 51% on D.

Proof. This proof consist of an explicit construction of a

family of data distributions that fulfills the three conditions.

Defining F . We first need to define our family of classifica-

tion problems, F . For that, we first set the data dimension to

d = �log2 n�+ 7. We denote the set of all binary functions

on the (d− 1)-dimensional hypercube as Φ,

Φ =
{
φ : {±1}d−1 → {±1}}. (6)

Note that this is a very large set with size |Φ| = 22
d−1

. For

every φ ∈ Φ we will define a data distribution Dφ, then our

family of distribution is given as

F = {Dφ : φ ∈ Φ}. (7)

In order to sample a pair (x, y) from Dφ, we will sample xi

uniformly from {+1,−1} for i = 1, . . . , (d− 1). Then we

will set xd = δφ(x1, . . . , xd−1) for some small scalar δ,

and y = sign(xd). Here, x1, . . . , xd−1 are robust (large

magnitude) features. Their relation to the ground truth label

y is deterministic (y = φ(x1, . . . , xd−1)), but it is hard

to learn because of the size of Φ. In contrast, xd is a use-

ful, non-robust feature: It is perfectly correlated with the

label, but because of its small magnitude it can be easily

perturbed.

Proof of statement 1. For any Dφ ∈ F with associ-

ated mapping φ, consider the classifier f(x1, . . . , xd) =
φ
(
sign(x1), . . . , sign(xd−1)

)
. f is robust against any per-

turbations of size ε < 1, because any such perturbation of

the robust features is undone by the sign function, and it

has perfect accuracy, because it coincides with the labeling

function φ.

Proof of statement 2. Consider a learning algorithm that

always outputs the classifier f(x1, . . . , xd) = sign(xd).
Then, because y = sign(xd) holds for all data distributions,

it follows that f has perfect accuracy on future data.

Proof of statement 3. The third property requires a

slightly longer proof, resembling the No Free Lunch the-

orem, e.g. [35, Theorem 5.1]. Intuitively, it is based on

the fact that a robust classifier cannot rely on the value

of feature xd, because that can be set to 0 by a perturba-

tion of size δ. Furthermore, the functional relation between

(x1, . . . , xd−1) and y, is hard to learn because of the size

of Φ.

In order to prove the statement, first note that the average

adversarial test error for perturbation of size � δ is given as

E
Dφ∈F

E

S
iid∼ Dφ

P
(x,y)∼Dφ

[
∃

x′∈Nδ(x)
s.t. L(S)(x′) �= y

]
,

(8)

for Nδ(x) = {x′ : ‖x − x′‖2 � δ}. We can get a lower

bound to this quantity by considering only a single attack

that sets the “non-robust” feature xd to 0. We will write x̃
for the result of applying this attack to an input x. With this

we can lower bound the average adversarial test error by

E
Dφ∈F

E

S
iid∼ Dφ

P
(x,y)∼Dφ

L(S)(x̃) �= y. (9)

Next we will rewrite sampling Dφ ∈ F and S
iid∼ Dφ as

sampling φ ∈ Φ, and once we know φ, sampling from Dφ
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is equal to sampling the robust features from the hypercube

{±1}d−1, as the non-robust feature xd and the label depend

deterministically on the robust features. We can further-

more change the order of sampling the robust features and

sampling φ ∈ Φ. We will write X r and xr for these ro-

bust features. Using this, the lower bound on the average

adversarial test error becomes:

E
X r

E
xr

E
φ∈Φ

�

[
L(X r, φ(X r)

)
(x̃r) �= φ(xr)

]
(10)

Now note that when xr �∈ X r, then φ(xr) becomes inde-

pendent of φ(X r). Therefore, since we assumed a uniform

distribution on Φ, any learner will be correct exactly 1
2 of

the time. When xr ∈ X r, any reasonable learner should be

able to predict correctly, we will bound the error in this case

by 0. Using this, the lower bound on the average adversarial

test error becomes

E
X r

E
xr
�

[
xr �∈ X r

]1
2
. (11)

Now the probability that xr ∈ X r is at most n
2d−1 , so

we know that the average adversarial test error is at least
1
2 − n

2d
, and therefore at least 49% by our choice of

d = �log2 n�+ 7.

Theorem 1 establishes a lower bound on the worst case

behavior, by showing that in certain settings we do require

exponentially many data points (exponentially in the dataset

dimension). Next, we provide a matching upper bound: As

long as the input domain is bounded and some robust clas-

sifier exists, exponentially many data points suffice to learn

an accurate and robust classifier. For this we do need to

assume that there exists a robust classifier that is robust to

perturbations with bounded L∞ norm. Note that here is the

only part of the paper where we use L∞ norm, everywhere

else we assume L2 distances. More precisely:

Theorem 2. Assume that there exists a L∞ robust classifier
(margin δ) on data distribution D, where the data points are
in [0, 1]d. Then as long as we have n � 37

⌈
1
δ

⌉d
training

points independently sampled from D, the 1-nearest neigh-
bor classifier achieves average L∞ robust test accuracy of
� 99% (average over sampling training sets).

Proof Sketch 1. We first show that for any test point, the
nearest point of a different class is at least 2δ away. There-
fore, if there is a training point within distance δ of a test
point, no perturbation of size at most δ/2 applied to the
test point can change the prediction of the 1-nearest neigh-
bor algorithm. Finally, we show that the probability (over
sampling training set and test point) of having a training
example within δ is � 99%.

For the full proof see Section 8. Note that we can adapt

the proof to work for any margin δ′ < δ, and not just for

δ/2. Furthermore, if we only assume L2 robustness we

might need many more data points, namely O(cddd/2) for

some constant c.

4. Experimental setup
In order to gather evidence towards quantifying the behavior

of robust classifiers on datasets such as MNIST and CIFAR-

10, we train some robust and standard (non-robust) mod-

els. We provide some background and describe architec-

tures and training setup below.

SimpleConvNet. In order to obtain simple models that

achieve good accuracy we rely on the SimpleConvNet [28,

41]. It consists of 8 convolutional layers and one linear

layer. Each convolutional layer uses BatchNorm [21] and

ReLU as the activation function. The model uses MaxPool-
ing in order to reduce the resolution in the forward pass and

also as a global pooling before the linear layer. In order to

calculate the loss, we first apply the Softmax function with

temperature 1
8 to the predicted class scores, and then use

CrossEntropy.

1-Lipschitz models. For the robust 1-Lipschitz models, we

either use an 8-layer MLP or the ConvNet architecture from

[31]. It constraints every single layer to be 1-Lipschitz,

therefore the whole network is 1-Lipschitz as well. The ar-

chitecture first concatenates channels with value 0 to the

input, so that the total number of channels becomes 64.

Then it applies 5 blocks with 3 convolutional layers each

followed by a 1-Lipschitz linear layer. As 1-Lipschitz lin-

ear layers we use AOL [29] or CPL [24]. As common in

1-Lipschitz networks, the architecture uses MaxMin [2] as

the activation function. As down sampling it uses PixelUn-
shuffle. Unless mentioned otherwise, the loss function we

use is OffsetCrossEntropy [29], with offset and temperature

both set to 1
4 . The only hyperparameter we tune is the peak

learning rate, we train models with different learning rates

for 100 epochs each, and pick the learning rate of the model

with the highest certified robust accuracy on a validation

set. For evaluation we usually train for 3000 epochs.

Randomized Smoothing We also estimate the robust per-

formance of a Randomized Smoothing classifier [10]. Based

on a classifier f : Rd → [C], for C the number of classes,

the smoothed classifier h is defined as

h(x) = argmax
c∈[C]

P(f(x+ ε) = c), (12)

where ε follows a certain multivariate Gaussian distribu-

tion: ε ∼ N (0, σ2I) for some fixed standard deviation σ.

Suppose f(x + ε) returns the two most likely classes with

probabilities p1 and p2. Then, its smoothed classifier is ro-

bust to perturbations of size σ
2

(
F−1

G (p1)− F−1
G (p2)

)
, for

F−1
G the inverse of a standard Gaussian cumulative distri-

bution function.
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Unfortunately, we cannot evaluate this classifier.1 How-

ever, we can approximate it by sampling ε. Furthermore,

we can also estimate the robust performance of this (theo-

retical) classifier. Since in this chapter we are purely inter-

ested in estimating robust performance, we directly report

this approximation in our results.

We use a SimpleConvNet for the base classifier f and

during training we add Gaussian noise to the images in ad-

dition to the data augmentation described in Section 4. We

found that setting the standard deviation σ to 1
8 and train-

ing for 100 epochs gave us good results on a validation

set, therefore we used this values for our evaluation runs.

We approximate the class probabilities by sampling ε 1000
times.

Optimization. We train all our models using SGD with

Nesterov momentum of 0.9 and batch size of 256 with

OneCycleLR as a learning rate scheduler. As data pre-

processing we subtract the training data mean from every

channel, we do not rescale the data. We use the same data

augmentation as [28, 41]. It consists of random crops, ran-

dom flips and setting a random patch of the image to zero.

5. Experimental results

5.1. Robust scaling behavior

Recent work on robust image classification has shown that

additional data can greatly increase robust accuracy on

CIFAR-10. Also, in Section 3 we have shown that the

amount of training data can be an important limiting fac-

tor for robust classification. Therefore, in this section, we

want to explore how the size of the training data influences

the performance of a robust classifier trained on real data.

We generated datasets of different sizes by sub-sampling

the training partition of existing datasets such as CIFAR-10.

We evaluated the performance of models trained on those

smaller datasets. In order to keep the amount of compute

the same for all settings, when we divide the dataset size

by some value k we also multiply the number of epochs by

k. The results can be found in Figure 1. We found that in-

creasing the size of the dataset size does indeed make a big

difference for the (test) performance of these models, and

doubling the size of the dataset seems to reliably increase

the certified robust accuracy by about 5%.

We repeated the experiments on MNIST and CIFAR-

100, see Figure 2 for the results. Considering all results

together, we can nicely see that the certified robust accu-

racy follows a sigmoid curve. No matter how little data, we

can always robustly classifier at chance level. This is visible

on CIFAR-100, as the curve starts out almost flat for little

training data. With more data, the certified robust accuracy

1When f is a piecewise-affine classifier, we could in theory evaluate

the probability. This is usually not possible in practice though.

Figure 1. Accuracy (top) and certified robust accuracy for

ε = 36/255 (bottom). Training on subsets of CIFAR-10.

Figure 2. Scaling behavior on MNIST (top) and CIFAR-100 (bot-

tom).

increases about linearly with the logarithm of the amount of

training data. We can never get above 100% certified robust

accuracy, so for larger dataset sizes the curve flattens again,

which can be seen in the MNIST experiment.

Interestingly, we also observe that across dataset, when
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training long enough, the convolutional architecture and the

MLP have a very similar performance. It does seem that

for robust classification, the inductive biases from the con-

volutional architecture are not very helpful, which is a big

difference to non-robust classification.

We did a similar set of experiments to evaluate the influ-

ence of the amount of compute. The results are in Figure 5.

Whilst increasing only the compute does also improve the

performance, it has much less of an effect, and the curves

flatten out with increasing compute. Note that of course

with more data, additional compute will be more useful. So

we do expect that ideally we scale up both, dataset size as

well as compute.

Recently, different pieces of work [1, 16, 18, 19, 40] have

used additional data in the style of CIFAR-10 generated by

a diffusion model in order to improve the performance of

robust classifiers. We also conduct scaling experiments on

additional data, and find that the scaling nicely extends to

larger sizes. See Section 9 for results.

5.2. Robust and non-robust features

In our theoretical section we have established that robust

classification can be much harder than non-robust classifica-

tion, which is also what we observe in experiments. In our

theoretical example this hardness comes from a feature of

small magnitude and high predictive power. In this section

we aim to evaluate whether CIFAR-10 has similar proper-

ties: We want to know whether there is a subspace of the

input space, such that the data has very low variance when

projected onto that subspace, yet the projection is useful for

classification. It turns out that it is the case. For example,

we can find such a subspace by considering the principal

components [27] of the dataset. The principal components

of a data set are orthogonal basis vectors, such that prin-

cipal component i maximizes the variance of the data that

lies in the subspace spanned by the first i principal compo-

nents. For visualizations of the first principal components

of CIFAR-10 as well as the variance explained by subsets

of principal components see Section 10.

For our experiments we flatten the training images in or-

der to evaluate the principal components. Then in different

experiments we project the flattened (train and test) images

onto different subsets of principal components. After the

projection, we transform the vectors back into the image

space, so that we can train a standard and a 1-Lipschitz con-

volutional CPL network on the data without modifications

to the setup.

Find our results in Table 1 and Figure 3 as well as some

more in Figure 10. It turns out that when considering the

subspace spanned by all but the first 512 components, only

about 2% of the data variance are in this subspace. How-

ever, when training a standard network on this data, we ob-

tain about 85% test accuracy. Similarly, when projecting on

Figure 3. Performance on different subsets of the principal com-

ponents.

the last 1024 (out of 3072) components, we get only 0.02%
of the variance, not enough to allow any robust classifica-

tion, not even on the training data. However, we trained a

standard network to achieve about 39% accuracy on the test

set, so there is still some weak signal in the last principal

component, a signal that we cannot use for robust classifi-

cation due to its low magnitude.

From this we conclude that there are in fact low magni-

tude directions on CIFAR-10 that are useful for classifica-

tion, yet because of the small magnitude they are not useful

for robust classification. This is a property that CIFAR-10

shares with our example from Section 3.

We are also interested in the principal components of

high variance. It turns out that the first principal compo-

nents are not very useful for generalizing. When using only

the first 16 principal components for example, we do get

about 72% of the total variance, and we can fit standard net-

works to get � 99% training accuracy. Furthermore we can

also train 1-Lipschitz ConvNets to get good certified robust

training accuracy (64% with augmentation, 97% without)

on this low-dimensional subspace. However, the standard

convolution network only achieves about 43% accuracy on

the test set, suggesting that there is only a weak signal in

those features despite high variance.

Based on this observation, we created another dataset

which contains the PCA components 1–16 together with

the components 513–3072, that is, high magnitude and low

magnitude features but not the intermediates. This data suf-

fices for non-robust learning (86% test accuracy), but robust

learning fails (35% robust test accuracy). We take this result

as an indication that CIFAR-10 as a real dataset shares some

characteristics with the hypercube example in Theorem 1: it

contains high-magnitude features, which do not allow gen-
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eralizing, and features of tiny magnitude, which generalize,

but which no robust classifier is not able to exploit.

5.3. Robust overfitting

Previous works have suspected that the lack of robust per-

formance might be due to underfitting: Our models might

not have enough capacity to fit the data robustly. In our

next experiment we will show that this is not the case, we

can train a 1-Lipschitz networks to perfectly fit CIFAR-10,

and do so in a robust way. We train an CPL ConvNet and an

AOL MLP. In order to overfit robustly, we set the offset in

our loss function to
√
2, and we train without augmentation

for 3000 epochs.

We show the results in Figure 4. First note that we can

clearly fit the training data robustly. For the MLP, even for

perturbations of size 1, we get almost perfect certified ro-

bust accuracy on the training set. However, it is also visible

that the classifiers do not generalize well. The performance

on the test set is much worse for any perturbation size. No-

tably, robust overfitting does seem to require training for a

lot of epochs.

Importantly, this result does not imply that our models

have enough capacity to fit the data distribution robustly,

only that they have enough capacity for the amount of train-

ing data we currently have. We believe that when scaling up

to amount of training data by a few magnitudes, of course

we will benefit from larger models. However, the results in

Figure 4 shows that the capacity is not the current bottle-

neck.

5.4. Robust architectures can generalize

In this final experimental section we want to explore

whether it is the model architecture that prevents robust

models from generalizing. In order to prevent vanishing

gradients and other problems when training 1-Lipschitz net-

works, there are a few important adaptation from standard

convolutional networks. Apart from the different linear lay-

ers, in 1-Lipschitz model we use different activation layers,

no MaxPooling, no BatchNorm and different initialization

strategies, see also Table 2.

In order to evaluate whether the difference in architec-

ture (e.g. the lack of global pooling in 1-Lipschitz net-

works) is the reason for the worse generalization, we care-

fully constructed a single architecture that can be trained

to either competitive accuracy (93.2%) or competitive cer-

tified robust accuracy (61.7%), depending on the choice of

loss function. This shows that 1-Lipschitz architectures can

achieve compareable accuracy to traditional ConvNets, so

we do not require layers such as MaxPooling for general-

ization. We report details and results in Section 11.

Figure 4. We can robustly overfit the CIFAR-10 training set with

a CPL ConvNet (top) and an AOL MLP (bottom).

6. Related work
We will first describe related work on robust general-
ization. One closely related piece of work is [34]. In

their work, the authors show that even in a very sim-

ple example on Gaussian distributions, robust classification

can require many more training examples than non-robust

classification. In their example, we can construct an ac-

curate classifier from just a single training example, but

for ε-robust classification with L∞-norm we need about

Ω(ε2
√
d/ log(d)) examples, for d the data dimension.2 This

is an very interesting results, that could explain part of the

gap in performance between standard classification and ro-

bust classification. Our paper differs in that we are mainly

interested in L2 robustness, and in our example we show

that the gap in samples required could potentially be much

larger, and we might require Ω(2d) training examples.

The work of [34] has been extended by [5] and [11],

where the authors also consider different Lp norms, and

prove some bounds about the excess risk. We are more in-

terested in distribution where the optimal robust classifier

2Here, Ω is the Bachmann–Landau notation: for functions f and g,

we write f(d) = Ω(g(d)) if for some M and d0 it holds that |f(d)| �
M |g(d)| for all d � d0.
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actually achieves 0 risk, and furthermore we think that the

convergence rate to this optimal risk is not that important,

but the sample complexity of getting within (e.g.) 1% of the

optimal risk is a more useful quantity to study.

Other works have also produced results about robust gen-

eralization. For example, in [32] the authors introduce a

data distribution where adversarial training can hurt the test

performance of a (regression) model. The authors also ar-

gue that we do not actually need labeled data in order to im-

prove performance. As long as we have unlabeled data, we

can use a standard network to produce pseudo-labels, and

(as long as the data is not adversarial) those labels should

be fairly accurate. In [25] the authors show that for Gaus-

sian data the test loss of a linear classifier might actually get

worse with additional data, or might show some double de-

scent behavior. In [6] the authors consider data distribution

where an perfectly accurate robust classifier exists. They

show that in this scenario, learning a robust classifier with

maximal possible margin can need d times more samples.

We show in our paper that robust classification can be hard

not just when aiming for maximum possible margin, but

also when the goal is robustness to smaller perturbations.

A different attempt of explaining the lack of performance

of current robust models is by blaming it on the robustness-
accuracy trade-off [37]. It has been observed theoretically

as well as empirically that on certain data distributions a

classifier can be either very accurate or reasonably robust,

but not both [4, 13, 33, 37, 43]. Whilst this trade-off offers

interesting insights in general, we think it is not the most

promising way to study the lack of performance in image

classification tasks, where a classifier that is both accurate

and robust at the same time does exist.

Other authors argue that robust classification might re-

quire much more complex models, where complexity can

refer to the hypothesis class [14, 26, 30], the amount of

compute required [7, 12] or the size of the model required

[8, 23]. The distributions used to prove results are often

similar to our example distribution, there is a map that is

hard to learn (e.g. from the hypercube to the label), but the

data comes with an additional feature of small magnitude

that allows us read off the label. These results are further

related to our work as in order to use exponentially (in d)

many examples, one definitely also requires compute expo-

nentially in d, at either training (e.g. for a neural network)

or at inference time (e.g. for a 1-nearest neighbor classifier).

So our result also implies the result that on certain distribu-

tions we do require exponential amount of compute.

Another related concept are robust and non-robust fea-
tures [20]. The authors introduce the idea that adversarial

examples might not directly be artifacts of the way we train

the models, but exist because of the data distribution. Fur-

thermore, they exist because of features that are useful and

generalize well but are not robust. In [20] the authors use

a very general definition of features, and consider any map

from the input space to the real numbers a feature. We be-

lieve this definition is too general to give us insights about

the datasets. We show that even linear subspaces of the in-

put space exist with tiny variance, and yet projecting into

these subspaces still allows achieving great (non-robust)

performance.

There is also a recent piece of work [3] that studied

robust scaling laws, however they consider perturbations

with bounded L∞ norm. In their setting they concluded

that (with current techniques) it will require unreasonable

amounts of compute (much more than to train recent LLMs)

to match human performance on CIFAR-10.

7. Conclusion
Even 10 years after adversarial examples have entered the

community’s attention, robust classification is far from

solved. Furthermore it is also not clear what makes the

problem of robust classification so hard, and we still strug-

gle on very simple datasets with robustness to fairly small

perturbations. In our paper we have aimed to collect the-

oretical facts and empirical evidence about robust classifi-

cation, in particular about robust generalization, in order to

give the field a better understanding of the phenomena.

We first showed that there are data distributions on which

it is not possible to train a robust classifier, unless the

amount of data is unreasonably large. Moreover, this can

be the case even for distribution where we can easily learn

a good (non-robust) classifier, and where a perfect robust

classifier exists.

Based on this insight, we evaluated whether similar re-

sults also hold on real data. We showed that on popular

datasets including CIFAR-10, the performance of current

models seems to be mainly determined by the amount of

training data. Furthermore, we showed that as in our theo-

retical example, CIFAR-10 does have low-magnitude direc-

tions that cannot be used for robust classification, yet they

are useful for training a standard classifier.

Finally, we showed that the lack of performance of 1-

Lipschitz classifiers is not a consequence of the architecture.

In particular, 1-Lipschitz models are expressive enough to

fit the training data very robustly. Furthermore, 1-Lipschitz

architecture are also able to do (non-robust) generalization

very well and the same architecture can be trained either

to good test accuracy, or to good certified robust accuracy

based on the choice of loss function. We just currently fail

do both (robust fitting and generalizing) at the same.

Overall we highlighted how important the amount of

data is for training a robust classifier. We hope that future

research will further explore scaling up datasets and classi-

fiers, and that awareness of the intriguing properties of ro-

bust classification we presented will allow the community

to create better robust image classifiers in the future.

667



References
[1] Thomas Altstidl, David Dobre, Björn Eskofier, Gauthier

Gidel, and Leo Schwinn. Raising the bar for certified ad-

versarial robustness with diffusion models. arXiv preprint
arXiv:2305.10388, 2023. 2, 6

[2] Cem Anil, James Lucas, and Roger Grosse. Sorting out Lip-

schitz function approximation. In International Conference
on Machine Learning (ICML), 2019. 4

[3] Brian R. Bartoldson, James Diffenderfer, Konstantinos

Parasyris, and Bhavya Kailkhura. Adversarial robustness

limits via scaling-law and human-alignment studies. In 2nd
Workshop on Advancing Neural Network Training: Compu-
tational Efficiency, Scalability, and Resource Optimization
(WANT@ ICML 2024), 2024. 8
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