
A. Appendix
A.1. Theoretical Analysis
Using the definitions 3.1, 3.2, 3.5, 3.4 and 3.3 we state the following theorem;

Theorem A.1. For a task td+1, we assume a hypothesis h → HWd+1 expressed as h(Wd+1, X) = Wd+1Xd+1+W0Xd+1+ b

where Wd+1 has rank m, b is some constant and W0 represents weights of a pretrained foundation model that is frozen during
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where ϖi are singular values of Ŵ , C is some constant such that W
→
d+1 = CŴ and C1, C2 are some constants.
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Hence, we can also say that with probability at least 1↑ 4ϑ,
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The Rademacher complexity of a low-rank weight matrix class HWE with rank K can be directly bounded using results from
[2] as
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d+1) from 6 and assume that, for a normalised ↓WE↓, it is usually
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This proves 4. Now to further prove 5, we use properties of Frobenius norm,
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K and get the same bound as above for ↓ω→
d+1 ↑ ωd+1↓2F . We can similarly obtain the upper

bound for 5
This concludes the proof.

Theorem A.1 provides an upper bound on the Frobenius norm of the difference between Wd+1 or WE and the optimal
solution W

→
d+1. 5 provides a tighter upper bound on the norm of the difference when task td+1 majorly lies in the shared

principal subspace. The extent to which task td+1 lies in the shared principle subspace is captured by the second term involving
the sum of squared truncated singular values Ŵ . Hence, if the task completely or majorly lie in the shared principal subspace,
then the first term (sqrt(rank)) will dominate the upper bound. Hence, if rank(Wd+1 ↘ K), then we can see that the upper
bound in eq. 5 will be tighter than in eq. 4 where the task lies majorly in the shared principal subspace. Similarly, when
m ↔ K, the upper bound on the difference norm will be tighter for Wd+1 than WE . When W

→
d+1 has a significant alignment

or projection along the singular vectors orthogonal to the ones with top K singular values, then the second term in 4 comes
into picture and it becomes difficult to directly compare the bounds in 4 and 5. However, if majority of the variance of W →

d+1

is along the singular vectors orthogonal to the top K components, it follows that WE will never be able to achieve convergence



while Wd+1. In contrast, Wd+1 could perform significantly better, as it is not restricted to learning only along the top K

principal components of Ŵ . While the assumption that W →
d+1 is spanned by the principal components of the shared principal

subspace might appear to be very strong, we empirically observe in table 4 that such an assumption is not impractically far
from reality. Particularly, we observe in table 2 that for GLUE benchmark, LoRA adapters trained on 5 diverse tasks shared a
principal subspace. We see that EigenLoRAx was able to leverage the principal components of this shared subspace with just
12K training parameters learned for a new 6th task and achieve competitive performance compared to fine-tuning full rank
weights with 125M parameters or individual LoRA adaptors with 1.2M parameters, even outperforming them in certain tasks.
Similarly, table 4 demonstrates zeroshot performance using only top K principal components of the shared subspace obtained
through 500 LoRA adaptors trained on diverse tasks. This further suggests that increasing the number of LoRA adapters
enables a richer set of top principal components, effectively spanning the shared subspace and providing broader coverage for
new tasks.

A.2. Experiments
For VeRA, LoRA and PiSSA, we experimented with a range of learning rates, from higher to lower, along with three
different scheduling approaches: ReduceLRonPlateau, Linear, and Cosine. The hyperparameters that yielded the best average
performance were selected for further experimentation. The observed discrepancies with EigenLoRAx hyperparameters
are attributable to these methodological choices. Comprehensive hyperparameter tuning for EigenLoRAx was not pursued
extensively, as the initially selected hyperparameters, notably a high learning rate paired with ReduceLRonPlateau or Linear,
demonstrated satisfactory performance, thereby conserving computational resources.

A.2.1. Image Classification
Trainable parameters for EigenLoRAx The base model is vit-base-patch16-224. The following are the trainable parameters
in ViT [12] that are trained for EigenLoRAx. We ignore the last linear layer for simplicity since it is trained for all models
and baselines and is constant. The loading parameter has the shape of [number of EigenLoRAx PC, 1] (we only have 2
in each EigenLoRAx PC for this experiment). Therefore, the total number of trainable parameters (for the number of
components= 2) is 12 (layers) ≃ 4 (set of parameters per layers) ≃ 2 (number of trainable parameter per coefficient) = 96
trainable parameters.

Hyperparameters LoRA [18] and VeRA [24] implementations are taken from the HuggingFace PEFT [35] library with
hyperparameters of the default method. For Food101 [4] experiment, we randomly remove 1 class for ease of compute.
Experimental hyperparameters are reported in Table 5 and Table 6.

Table 5. Hyperparameters for LoRA [18] and VeRA [24] for the Image Classification Experiment

CIFAR100 Flowers102 Food101
Learning Rate 1e↑4 1e↑4 1e↑4
Weight Decay 0.1 0.1 0.1
Warmup ratio 0.06 0.06 0.06

Epochs 10 10 10
Number of Subsets 5 6 5
Categories/Subset 20 17 20

Seed 42 42 42
Batch Size 128 64 128

Experimental Results The experiments were conducted 5 times utilizing randomly generated dataset splits. The mean
accuracy values are reported in Table 1. Empirical analysis indicates that without control and annealing of learning rates, the
loss for both LoRA and VeRA may diverge or plateau, particularly with high learning rates. Even with the lower learning
rate, Full training or LoRA can overfit to the training data without proper regularization. In contrast, no such instability was
observed during EigenLoRAx training, where a relatively higher learning rate proved advantageous for rapid convergence.



Table 6. Hyperparameters for EigenLoRAx for the Image Classification Experiment

CIFAR100 Flowers102 Food101
Learning Rate 1e↑2 1e↑2 1e↑2
Weight Decay 0.1 0.1 0.1
Warmup ratio 0.06 0.06 0.06

Epochs 10 10 10
Number of Subsets 5 6 5
Categories/Subset 20 17 20

Seed 42 42 42
Batch Size 128 64 128

Table 7. Image Classification Accuracy results on CIFAR100 [25]

Trainable
Model Params subset1 subset2 subset3 subset4 subset5 Avg.
FT 86389248 98.8 97.95 95.55 96.05 96.3 96.93
LoRA (r = 1) 36864 97.6 93.95 93.75 91.75 85.2 92.45
LoRA (r = 4) 147456 98.15 95.2 93.5 92.85 89.25 93.79
VeRA (r = 2) 18480 93.65 89.7 89.5 89.95 91.55 90.87
EigenLoRAx (K = 2) 96 97.25 95.05 94.55 93 94.15 94.8

Table 8. Image Classification Accuracy results on Food101 [4]

Trainable
Model Params subset1 subset2 subset3 subset4 subset5 Avg.
FT 86389248 98.64 97 97.36 94.28 95.92 96.64
LoRA (r = 1) 36864 93.36 88.44 94.28 89.4 89.9 91.076
LoRA (r = 4) 147456 98.2 96.96 96.08 92.88 94.52 95.728
VeRA (r = 2) 18480 91.22 88.42 94.42 91.88 92.82 91.752
EigenLoRAx (K = 2) 96 97.24 95.96 96 91.88 94.6 95.136

Table 9. Image Classification Accuracy results on Flowers102 [37]

Model subset1 subset2 subset3 subset4 subset5 subset6 Avg.
FT 99.7 99.3 98.01 98.22 99.7 98.01 98.82
LoRA (r = 1) 85.9 88.47 92.69 91.02 91.7 91.01 90.13
LoRA (r = 4) 96.23 92.76 97.22 95.01 98.24 90.73 95.03
VeRA (r = 2) 99.2 95.4 97.7 94.7 90.9 95 95.48
EigenLoRAx (K = 2) 99.686 97.905 97.689 98.291 99.344 97.718 98.43

A.3. Natural Language Processing - GLUE benchmark

Hyperparameters LoRA [18], VeRA [24] and PISSA [36] implementations are taken from the HuggingFace PEFT [35]
library. Refer to Table 10 and Table 11 for hyperparameter details. For LoRA [18], we use the ranks → {8, 16}. For VeRA [24],
we use rank= 256, and for EigenLoRAx, we use K → {16, 32} and r = 8. Here, r refers to the dimensionality of the trainable
coefficients and not the rank. For both PISSA [36] and LoRA, all the parameters of the low rank matrix are trainable. For the
EigenLoRAx initialization experiment, we train both the components and coefficients for a fair comparison with PISSA. In



practice, however, we do not need to do so - we can tune only the sparse coefficients and after the loss converges, finetune the
components for a few training steps.

Table 10. Hyperparameters for LoRA [18], VeRA [24] and PiSSA [36] for the GLUE benchmark. [46]

CoLA MRPC QNLI RTE SST-2 STSB

Learning Rate 4e↑4 4e↑4 4e↑4 5e↑4 5e↑4 4e↑4
Weight Decay 0.1 0.1 0.1 0.1 0.1 0.1
Warmup ratio 0.06 0.06 0.06 0.06 0.06 0.06

Epochs 80 30 25 80 60 40
Scheduler Linear Linear Linear Linear Linear Linear

Seed 0 0 0 0 0 0
Batch Size 64 64 64 64 64 64

Table 11. Hyperparameters for EigenLoRAx for the GLUE benchmark. [46].
(RLrP - ReduceLRonPlateau)

CoLA MRPC QNLI RTE SST-2 STSB

Learning Rate 4e↑3 4e↑3 4e↑3 5e↑3 5e↑3 4e↑3
Weight Decay 0.1 0.1 0.1 0.1 0.1 0.1
Warmup ratio 0.06 0.06 0.06 0.06 0.06 0.06

Epochs 80 30 25 80 60 40
Scheduler RLrP RLrP RLrP RLrP RLrP RLrP

Seed 0 0 0 0 0 0
Batch Size 64 64 64 64 64 64

A.4. Text-to-Image Generation (Stable Diffusion Models)
Figure 5 show more examples of a text-to-image stable diffusion model finetuned using EigenLoRAx. Note that not only
there is no publicly available code for VeRA that allows its usage in complex text-to-image generation tasks, but our VeRA
implementation also did not work well in this task.

Figure 5. A single EigenLoRAx (identical components, varying loadings) was employed to produce these images utilizing the Stable
Diffusion-XL [38] model. A comparison between our results and those obtained from multiple LoRAs does not show a noticeable degradation
in visual quality.



Figure 6. Failure Case: EigenLoRAx may fail if an important component is missing from the initialized subspace i.e. the shared subspace is
incomplete, which may happen due to inadequacy in the number of initial adapters or due to the majority of the adapters being of bad quality.
E.g., the model may have lost the essential ”mosaic” property when generating an image for the prompt: ”mosaic picture of a dog.”

B. Method Analysis and Ablation

Through a rigorous comparative analysis of EigenLoRAxs and their target LoRAs, we identified that the most pronounced
reconstruction discrepancies manifest in the initial and terminal layers of the neural network, as depicted in Figure 7. Allowing
the EigenLoRAx PCs in these layers to undergo fine-tuning alongwith the coefficients can alleviate failure scenarios, thereby
alleviating the need for comprehensive model fine-tuning.

Figure 7. Average reconstruction error between EigenLoRAx and a set of LoRAs for all UNet layers in a stable diffusion model.

B.1. How to Choose K Principal Components and r for EigenLoRAx

We perform an ablation study on the selection of EigenLoRAx principal components (K). Our analysis concentrates on
one experiment as shown in Figure 10, specifically pertaining to the MRPC task within the GLUE [46] benchmark. The
analysis in Figure 8 shows the training loss in relation to increasing number of EigenLoRAx principal components K, as well
as the explained variance of the LoRAs used to initialize the EigenLoRAx in Figure 9. We find, empirically, that choosing
EigenLoRAx PCs for the explained variance of 50 ↑ 80% of the LoRAs used to initialize EigenLoRAx is sufficient for a
robust initialization. This is shown in Figure 9 where we choose K = 8 which roughly corresponds to the explained variance
of 55↑ 60%. We further ablate this choice in Figure 8, where although substantial improvements are evident up to K = 8,
an increase in the number of K thereafter yields only marginal gains, demonstrating diminishing returns as the number of
components increases. The parameter r in EigenLoRAx does not equate the rank parameter in LoRA and its variants. It reflects
the dimensionality of the EigenLoRAx coefficients. Although r = 1 works well, we observe slight performance improvements
as we increase this value as shown in Figure 11. Increasing this value corresponds to a small amount of parameter increase.
We observe no finetuning instability by changing this value and recommend that it can be set to anywhere between 1 and the
rank of the LoRAs used to initialize EigenLoRAx.



Figure 8. Training Loss Convergence for different numbers of Eigen-
LoRAx PCs Figure 9. Explained Variance for increasing number of PCs

Figure 10. Ablation of Number of EigenLoRAx Principal Components

Figure 11. Ablation for the EigenLoRAx’s r hyperparameter. This experiment was done for the MRPC task in the GLUE benchmark.

B.2. Failure Cases
Figure 6 illustrates a potential failure case of EigenLoRAx, where the incorrect number of principal components (PCs) was
selected. In this instance, the ”mosaic style” information was excluded from the principal subspace identified by EigenLoRAx
due to an insufficient number of PCs. However, this issue can be resolved by selecting a larger number of PCs, as the extended
principal subspace contains the necessary information for the task.

Another hypothetical failure scenario arises if the domain gap between the low-rank adapters used to initialize EigenLoRAx
and the downstream task is significantly large. Although we do not observe such a case in our experiments, it is plausible that
under such conditions, EigenLoRAx might underperform. This issue could potentially be mitigated by allowing only a subset
of PCs to remain trainable, enabling the model to adapt more effectively to the target domain.

A further observed limitation of EigenLoRAx occurs in complex tasks like Text-to-Image generation, which may extend to
other tasks as well. If the majority of LoRAs used to initialize EigenLoRAx encode biases (e.g., related to gender, race, or
context), these biases tend to propagate into EigenLoRAx outputs. While such biases are a common issue in deep learning
models trained using stochastic gradient descent or similar methods, addressing them remains a critical area of future work.



We consider this an important avenue for improvement and discuss the broader implications in Appendix C.

B.3. Impact of LoRA adapter quality on EigenLoRAx PC initialization
To evaluate EigenLoRAx’s robustness to adapter quality and its resistance to noise, we conducted an ablation study on a
subset of tasks of the NLU experiment specified in Section 4.2. Specifically, we generated EigenLoRAx adapters using LoRA
matrices with varying levels of random noise added. The results are shown in Table 12

Table 12. EigenLoRAx performance on subset of GLUE task using noisy LoRA adapters for initialization

Noise Level CoLA MRPC RTE STS-B Avg

5% 60.51 85.45 74.73 89.9 77.65
15% 57.53 83.09 72.92 89.9 75.86
30% 55.23 76.47 71.84 89.8 73.34

The results show that EigenLoRAx exhibits only minor performance changes even as noise levels increase significantly,
indicating some robustness to adapter quality. This suggests that EigenLoRAx can still perform effectively without high
quality adapters. However, there is a limit to this robustness. If the signal-to-noise ratio (SNR) in the initial LoRA matrices
becomes extremely low—where the LoRAs primarily encode noise rather than meaningful information—the effectiveness
of EigenLoRAx diminishes. In such cases, the principal components (PCs) extracted by EigenLoRAx would correspond to
random directions in the parameter space. Consequently, EigenLoRAx’s performance would resemble that of random matrix
methods, such as VeRA and NoLA. These methods rely on a large number of random components or bases to approximate
meaningful results. While they can achieve reasonable performance, they require fine-tuning a substantially larger number of
weights associated with these large number of random components, leading to less efficient learning compared to EigenLoRAx.
This highlights an important consideration: for EigenLoRAx to maintain its efficiency and effectiveness, the initial LoRA
matrices must contain at least a minimal level of meaningful signal. This requirement ensures that EigenLoRAx can leverage
the structured information encoded in the LoRAs while avoiding the inefficiencies of purely random approaches.

B.4. Forward pass and backward pass FLOPs
While it is obvious that EigenLoRAx utilized significantly less number of model parameters as the number of tasks in a domain
increase, we show that even in terms of floating point operations on a single task, EigenLoRAx is more efficient than LoRA
for our experiments. Even for a single task, the number of floating point operations or multiply-accumulate operations in a
forward pass for EigenLoRAx is lower than LoRA for all our experiments. Here are the comparisons of the floating point
operations (FLOPs) for the forward (fwd FLOPs) and including backward pass (fwd+bwd FLOPs) for each of the Image
Classification and GLUE benchmark (batch size = 1) (MFLOPs - MegaFlops):

Table 13. Floating Point Operation calculations for GLUE Benchmark experiment

Method Training Parameters fwd FLOPs fwd+bwd FLOPs

LoRA 1.2M 97,930 MFLOPS 293,800 MFLOPS
VeRA 25K 106,390 MFLOPS 319,170 MFLOPS
EigenLoRAx 12K 97,030 MFLOPS 291,080 MFLOPS

Table 14. Floating Point Operation calculations for Image Classification experiment

Method Training Parameters fwd FLOPs fwd+bwd FLOPs

LoRA 36K 33,773.8 MFLOPS 101,322 MFLOPS
VeRA 18K 33,744.8 MFLOPS 101.234 MFLOPS
EigenLoRAx 96 33,730.2 MFLOPS 101,191 MFLOPS



C. Broader Impact and Implications
This work presents a novel parameter-efficient method for deep learning methods utilizing open source, pretrained Low-Rank
Adaptation (LoRA) models. By substantially reducing the computational and memory demands of training and inference,
our approach creates a more sustainable and environmentally friendly deep learning paradigm. Our method democratizes
accessibility to larger models, making them accessible to researchers and practitioners with limited resources. Furthermore, by
harnessing pretrained models, our method can accelerate development and diminish the need for extensive data collection.
However, we recognize the inherent risks associated with the use of pretrained models. These include potential biases (racial,
gender, etc.), explicit content, since there is no guarantee of the data or method used in training the model, and the potential
presence of malicious code. Appropriate caution is advised when using unverified, open-source models.
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