
Intriguing Properties of Robust Classification

Supplementary Material

8. Proof of Theorem 2

In this section we prove Theorem 2. Recall

Theorem 2. Assume that there exists a L∞ robust classifier
(margin δ) on data distribution D, where the data points are
in [0, 1]d. Then as long as we have n ⩾ 37

⌈
1
δ

⌉d
training

points independently sampled from D, the 1-nearest neigh-
bor classifier achieves average L∞ robust test accuracy of
⩾ 99% (average over sampling training sets).

Proof. In order to prove this theorem, we first show that
for any test point, the nearest point of a different class is at
least an L∞ distance of 2δ away. Assume that f is a robust
classifier on Dϕ. Consider a test point x and the nearest
training point xj that is of a different class. We know that f
robustly classifies both x and xj with radius δ. This implies
that any point of distance ⩽ δ to either of the points must
share a label with that point, and therefore x and xj must
be at least 2δ apart.

For a test point x with label y, suppose there exists a
training point xi that is less than δ away from x. By our
assumption, this training point also has label y. Consider
any other point x̃ with ∥x̃ − x∥∞ ⩽ δ/2. Furthermore,
consider any training point xj of a different class than x.
Using the triangle inequality we get that

∥x̃− xi∥∞ ⩽ ∥x̃− x∥∞ + ∥x− xi∥∞ <
3δ

2
(13)

∥x̃− xj∥∞ ⩾ ∥x− xj∥∞ − ∥x̃− x∥∞ ⩾
3δ

2
. (14)

Therefore, we know that the nearest training point to x̃ must
have label y. This shows that the 1-nearest neighbor is ro-
bust to perturbation of size ⩽ δ/2 of x.

With this established it just remains to be shown that with
enough training examples, for 99% of test points x, there
will be a training point close to x. In order to prove that
this is the case, we will split the hypercube into a set of
disjoint boxes. The probability of a test point being close
to a training point is at least as big as the probability of the
test point being in a box that has at least one training point
inside. We define the boxes by defining a set of box centers:
For D = ⌈1/δ⌉, set C = [12δ,

3
2δ, . . . ,

2D−1
2 δ]d. We define

Br(C) as the L∞ ball with radius r around C. Further, we
set B to be the set of all boxes, B = {Bδ/2(C) : C ∈ C}.
We have that |B| = Dd = ⌈1/δ⌉d. We will write pB for the
probability of a data point lying in box B under distibution
D. With this, we can write the probability of having at least

1 training point in box B as

P(∃i : xi ∈ B) = 1− P(xi ̸∈ B ∀i) (15)

= 1−
n∏

i=1

(1− P(xi ∈ B)) (16)

= 1− (1− pB)
n
. (17)

We further have that (1− p)n = (1− p)
1
pnp ⩽ exp(−np),

and therefore

P(∃i : xi ∈ B) ⩾ 1− exp(−npB). (18)

We will also use that exp(x) ⩾ 1 + x for all x, and
therefore exp(x− 1) ⩾ x, and

x exp(−x) ⩽ exp(−1). (19)

Then, putting everything together, for p the probability
that a test point x is classified robustly we have that:

p ⩾ P
(
min
i

∥x− xi∥∞ ⩽ δ
)

(20)

⩾
∑
B∈B

P(x ∈ B)P(∃i : xi ∈ B) (21)

⩾
∑
B∈B

pB(1− exp(−npB)) (22)

= 1−
∑
B∈B

pB exp(−npB) (23)

= 1− 1

n

∑
B∈B

npB exp(−npB) (24)

⩾ 1− 1

n

∑
B∈B

1

e
(25)

= 1− |B|
ne

(26)

Now since |B| = ⌈1/δ⌉d and we assumed that n ⩾
37⌈1/δ⌉d we get that p ⩾ 99%.

Note that we can adapt the proof to work for any margin
δ′ < δ, and not just for δ/2. Furthermore, if we only as-
sume L2 robustness we might need many more data points,
namely O(cddd/2) for some constant c.

9. Additional scaling law results

In this section we provide additional results for Section 5.1.

24 100 300 1k 3k 10k 30k
Training epochs

60%

70%

ac
c

Accuracy

CPL ConvNet
AOL MLP

24 100 300 1k 3k 10k 30k
Training epochs

50%

60%

CR
A

Certified Robust Accuracy

CPL ConvNet
AOL MLP

Figure 5. Scaling up the compute.

9.1. Scaling up compute

First we explore the question of whether increasing the
amount of compute alone can have a positive effect simi-
lar to the one we observed when increasing the size of the
dataset. The answer seems to be no. We analyze for 3 dif-
ferent models how they scale with compute when leaving
the dataset size fixed. The results are visualized in Figure 5.
Note that the x-axis is in log scale. Doubling the dataset
size improves the performance less and less, and the curves
for both accuracy and certified robust accuracy flatten with
increasing training epochs.

9.2. Training on additional data

We are also interested whether the scaling law from Figure 1
also extends to larger training datasets, larger than the 50k
images from the CIFAR-10 training dataset itself. Recently,
there has been a lot of works that used data generated in the
style of CIFAR-10 by a diffusion model [1, 16, 18, 19, 40].

We also followed this approach, and we used 1 million
images from [40]. We subsampled this large dataset to ob-
tain training sets of different sizes. For all experiments we
set the number of epochs to 3000, so we did use more com-
pute with larger datasets this time.

In addition to our own results, we also report the per-
formance of the current best 1-Lipschitz model [19]. The
authors generated 1 million additional CIFAR-10 style im-
ages with a diffusion model, using a model trained on 940
million images for data filtering. Training with this addi-
tional data allows them to achieve 78.1% certified robust
accuracy.

We show the results in Figure 6. The scaling behavior

102 103 104 105 106

Training set size

0%

20%

40%

60%

80%

100%

ac
c

Accuracy

CPL-ConvNet
AOL-MLP
Rand. Smoothing
SimpleConvNet

102 103 104 105 106

Training set size

0%

20%

40%

60%

80%

100%

CR
A

Certified Robust Accuracy

CPL-ConvNet
AOL-MLP
Rand. Smoothing
LiResNet

Figure 6. Scaling the size of the training data up by using addi-
tional data.

from Figure 1 extends to larger datasets sizes and gener-
ated data for all models considered. However, the improve-
ments from training 1-Lipschitz models naively on more
data, without increasing the model size eventually dimin-
ish. The results from related work that carefully designs the
training setup to maximize test performance show that it is
possible to extend the improvement. This effect might also
in part be due to the lower quality of generated data. For
randomized smoothing our estimate of performance does
scale very well with the amount of data.

9.3. Setup for MNIST experiments

Here we describe the setup we used for the additional results
on MNIST in Figure 2. In order to be able to keep most of
our setup the same, we padded the image (after subtracting
the mean value) with value 0 to size 32 × 32. We reduced
the size of our models slightly: we used 16 instead of 64
base channels for the ConvNet, and width 1024 instead of
3072 for the MLPs. We also simplified the augmentation
a bit, and used only random cropping (size 4) and random
flipping.

PCs Var. Accuracy % CRA %
Expl. % Train Test Train Test

1-16 72 99 43 64 31
1-512 98 100 91 89 61

513-3072 2 100 85 9 9
2049-3072 0.02 99 39 0 0

1-16 &
74 100 86 65 35513-3072

1-3072 100 100 94 93 62

Table 1. Performance on different subsets of the principal compo-
nents, as well as the proportion of variance explained by it.

9.4. Why linear-log?

It is very interesting that the performance in Figure 1 in-
creases approximately linearly in the logarithm of the train-
ing datasets size. Whilst we do not know why this is the
case we do want to provide two intuitions to the reader.

First, if we assume that the performance of a classifier on
a test point depends only on a constant number of ”useful”
examples (e.g. the k-nearest neighbors), then the probabil-
ity that an additional training example is ”useful” for a test
point is O(1/n). We also have that

∑n
i=1

1
i ∼ ln(n) + γ,

where γ ∼ 0.577 is the Euler-Mascheroni constant, which
might be the reason why we see this linear-log behavior.

Second, when we consider the minimum distance of a
test point to a training point, this distance should behave
approximately proportional to n− 1

d∗ for some d∗ ⩽ d (for
details see Section 12). When n ≪ exp(d∗), this term is ap-
proximately equal to 1− log(n)

d∗ , so the distance to the nearest
neighbor is approximately linear in log(n). If our classifier
improves (about linearly) as the nearest training examples
get closer to the test points, the observation above would
explain the scaling law we observe. We provide more de-
tails as well as some experimental evidence in Section 12.

10. Robust and non-robust features
In this section we provide additional visualizations for Sec-
tion 5.2. For the variance explained by subsets of principal
components see Figure 7, and some visualizations of im-
ages projected onto the first 16 components are in Figure 8.

In order to evaluate the capabilities of the models to over-
fit the training data projected onto different subsets of prin-
cipal components, we repeated the experiments from Sec-
tion 5.2 without data augmentation. The results are shown
in Figure 9. Note that we can robustly overfit the training
data, even when projected on just the first 16 principal com-
ponents.

For the performance on further different subset of prin-
cipal components see Figure 10.

1 4 16 64 256 1024
Number of Components

20%

40%

60%

80%

100%

Va
ria

nc
e

Ex
pl

ai
ne

d

Variance Explained by PCA

Figure 7. Variance explained by the first k principal components.

Figure 8. CIFAR-10 images (left) and their reconstruction using
16 principal components (right).

11. Robustness-accuracy trade-off
In this final experimental section we want to explore
whether it is the model architecture that prevents robust
models from generalizing. Often the architecture, layers,
and the training pipeline in general is different depending
on whether accuracy or robust accuracy is the goal metric.

1-16 1-512 513
-3072

2049
-3072

1-16 &
 513-3072

principal components

0%

20%

40%

60%

80%

100%

ac
cu

ra
cy

 /
cr

a
Performance on different PCs

acc train
acc test
cra train
cra test

Figure 9. Performance of models when projected to a subset of
principal components. Here, the robust models were trained with-
out data augmentation.

1 4 16 64 256 1024
Number of components included (log-scale)

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

 /
CR

A

Training on Principal Components

acc train
acc test
cra train
cra test

1 4 16 64 256 1024
Number of components excluded (log-scale)

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

 /
CR

A

Excluding Principal Components

acc train
acc test
cra train
cra test

Figure 10. Training on the subset of principal components with the
highest (top) or lowest (bottom) variance. Accuracy and certified
robust accuracy reported come from two different models.

Therefore, we want to explore whether the change in archi-
tecture is responsible for the lack of generalization in robust
networks. In order to prevent vanishing gradients and other
problems when training 1-Lipschitz networks, there are a

few important adaptation from standard convolutional net-
works. For example, in 1-Lipschitz model we use different
activation layers, not MaxPooling, no BatchNorm and dif-
ferent initialization strategies, see also Table 2.

In order to evaluate whether the difference in architecture
(e.g. the lack of global pooling in 1-Lipschitz networks) is
the reason for the worse generalization, we carefully con-
structed a single architecture that can reach competitive ac-
curacy and competitive certified robust accuracy.

Among all differences between the architectures, we
have found that initialization and batch normalization cause
most of the a trade-off between accuracy and certified ro-
bust accuracy, especially when training for a lower number
of epochs. For initialization, it seems that identity or near-
identity initialization is very useful for 1-Lipschitz networks
[31, 42], whereas great accuracy requires some random ini-
tialization (e.g. Kaiming uniform [17] or orthogonal). For
the experiments in this section we used orthogonal initial-
ization. Getting rid of the batch normalization is slightly
trickier when using 1-Lipschitz layers. However, it turns
out we can use a single normalization layer applied to the
output of the model to enable training to good accuracy. We
furthermore can fold this normalization into our loss func-
tion, so that we can train the identical model to good ac-
curacy and (with a different loss function) to good certified
robust accuracy.

In order to smoothly interpolate between the two setting
we introduce a loss function with a trade-off parameter t. It
aims to be a version of the OffsetCrossEntropy [29], with
additional normalization. We name the loss function Self-
NormalizingCrossEntropy and define it as:

CrossEntropy

(
Softmax

(
s

std(s) + t
− y

)
, y

)
, (27)

where s is the vector of scores predicted by the model, y
is a one-hot encoding of the label and std(s) denotes the
standard deviation of s.

We used this loss function to train a set of models that
includes ones with good accuracy and some with good cer-
tified robust accuracy. For results see Figure 11 and Ta-
ble 3. Setting t = 0 we can obtain 93.2% accuracy with
this model, showing that the model itself allows to gener-
alize comparably to traditional ConvNets, and we do not
require layers such as MaxPooling for generalisation. With
t = 1

10 we can train the model to 61.7% certified robust
accuracy. This shows that we can train the same architec-
ture to competitive accuracy or competitive certified robust
accuracy by only changing the loss function, and therefore
that the architectural restrictions of 1-Lipschitz models are
not the reason why those models fail to generalize well.

Interestingly, with our setup, there is no parameter value
that is good for both tasks, but we do see a clear accuracy-
robustness trade-off [37], as observed in the literature be-

ConvNets: Standard 1-Lipschitz

Activation ReLU MaxMin
Blocks 3 5

Global Pooling MaxPooling None
Local Pooling MaxPooling PixelUnshuffle
Normalization BatchNorm None
Convolution Standard 1-Lipschitz
Linear Layer Standard 1-Lipschitz
Initialization Random Identity Map

Table 2. Difference in architecture of a SimpleConvNet and a stan-
dard 1-Lipschitz ConvNet.

10 8 10 6 10 4 10 2 100

trade-off parameter

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

 (%
)

Robustness-Accuracy Trade-off

Accuracy
CRA

Figure 11. The same model can reach good accuracy as well as
good certified robust accuracy.

t Acc CRA

0 93.2% 0.0%
1
10 76.8% 61.7%

Table 3. We can get high accuracy or good certified robust accu-
racy with the same setup, only by changing the value of trade-off
parameter t in the loss function.

fore.

12. Details for linear-log behavior

In Figure 1 it seems that the certified robust accuracy de-
pends on the logarithm of the size of the training set almost
in a linear way. In this section we want to explore why this
might be the case.

For a first intuition, we will consider the scenario where
the performance of an architecture on every test example de-
pends only on a few training examples. We think of those as
e.g. the k-nearest neighbors or some support vectors. In this
case, a new training data point can only have an influence

on the performance (for a particular test point) if it is part
of those few examples. The chance that this is the case for
the nnt training example added to the training set is O(1n).
Therefore, the amount of times e.g. a k-nearest neighbor
classifier could be improved by adding an additional train-
ing example is O(1n), and the total amount of times it might
be improved when increasing the training set size from n1

to n2 is of order
n2∑

i=1+n1

1

i
∼ ln(n2)− ln(n1) = ln

(
n2

n1

)
. (28)

If the amount of improvement does not increase with dataset
size, this gives us an upper bound on the performance: For
some value c, doubling the dataset size should at best in-
crease the performance by c. This is in line with the behav-
ior we observe in Figure 1.

We can also analyze this behavior in terms of distance
to the nearest neighbor: We assume that for image datasets,
for some dimension d∗ (something like an ”intrinsic dimen-
sion of the data”), it should hold that the probability p of a
(test) data point being within radius r of another data point
approximately follows p ∼ crd

∗
for come value c. We want

to use this to make statements about the median of the dis-
tribution of the distance to the nearest neighbor, which we
call r∗. In order to do this, consider the probability pn that
any of n datapoints is close to the test point. We have that

pn = 1− (1− p)n ⩽ np (29)

and

pn = 1− (1− p)n ⩾ 1− exp(−np). (30)

Now if we set r = rl for

rl =

(
1

2cn

) 1
d∗

, (31)

we get that pn ⩽ np = nc 1
2nc = 1

2 , and therefore r∗ ⩾ rl.
Similarly, for

ru =

(
1

cn

) 1
d∗

, (32)

we get that pn ⩾ 1−exp(−np) = 1− 1
e > 1

2 , and therefore
r∗ ⩽ ru. Putting these together we have that(

1

2cn

) 1
d∗

⩽ r∗ ⩽

(
1

cn

) 1
d∗

. (33)

Furthermore note that as long as log n ≪ d∗, the follow-
ing approximation should be close:(

1

n

) 1
d∗

= exp

(
− log(n)

d∗

)
∼ 1− log(n)

d∗
. (34)

50k12k3k7811954812
Number of Training Samples

8

10

12

14

16
L2

 D
ist

an
ce

Distance to Nearest Neighbour
Mean
mean ± std

Figure 12. The distance to the nearest neighbor scales about lin-
early in log(n), for n the size of the training dataset.

Therefore, for some C it should approximately hold that

C

(
1− log(n)

d∗

)
⩽ r∗ ⩽ C

(
1− log(2n)

d∗

)
, (35)

which does imply that r∗ will behave approximately lin-
early in log(n) as long as log(n) ≪ d∗

We evaluated whether this relationship does hold on
CIFAR-10. Our results are shown in Figure 12, where we
show that indeed the distance to the nearest neighbor does
behave similarly to what we expect from the theoretical
analysis. If it is further the case that the (expected) certified
robust accuracy of a classifier increases when a test point
is closer to the training point, this would explain why the
performance of this classifier scales about linearly with the
logarithm of the dataset size. Note that at least when using
the angular distance, it seems that on average 1-Lipschitz
classifiers do better on test examples with a nearby training
example.

When estimating d∗ from the experimental data in Fig-
ure 12, we get an ”intrinsic dimension” of about d∗ ∼ 28.
This unfortunately implies that in order to get 1-nearest
neighbors of distance close to 1 we will require n ⩾ 1031.
So while the 1-nearest neighbor algorithm will produce a
great robust classifier with enough data, this amount of data
does not seem to be reachable in practice.

