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Supplementary Material

A. Method Details

A.1. Architecture and Training Details

DeclutterNeRF follows the core architecture and strategy

of the original NeRF [23]. Specifically, we build on

NeRF-- [48] and apply DeclutterNeRF on top of this struc-

ture. Our model is implemented using PyTorch [29] and

trained on a single NVIDIA GeForce RTX 4090 GPU.

Since our dataset typically requires no more than 10GB of

VRAM, and the image size can be adjusted flexibly to con-

trol memory usage, GPUs with significantly lower config-

urations can also be used to train our model. Unlike re-

cent models that employ multiple MLPs and assign distinct

names to each, we adhere to the original NeRF approach by

using a single MLP for training and rendering. Our MLP

consists of 8 fully connected ReLU hidden layers, each with

128 dimensions. Our further camera optimization algorithm

mentioned in Sec. 3.2 and problems encountered based on

the logic of NeRF--.

For training settings, we use a scale factor of 4 and a

batch size of 4096, with 200K iterations. This aligns with

the training methods of current mainstream models. Even

with a scale factor of 2 and a batch size of 8192, our GPU

memory usage does not exceed 15 GB. We evenly distribute

the batch samples across each input image, so the number

of samples per image depends on the total number of im-

ages in this scene. We train our model using the Adam op-

timizer [14].

A.2. Annotation Mapping Details

We directly leverage OR-NeRF’s efficient multiview seg-

mentation approach to remove obstacles and construct our

dataset [55]. Its multiview segmentation process is both

efficient and consistent. When given point prompts on a

single view, the system projects these points into 3D space

using COLMAP’s sparse reconstruction, establishing cor-

respondences between 2D points and the 3D point cloud.

These 3D points are then projected back to all 2D images

using camera parameters, creating consistent annotations

across all views. Once annotations are propagated to all

views, the SAM predicts masks for each view at approxi-

mately two frames per second, without requiring neural net-

work training for each scene.

A.3. Evaluation Settings

Due to the irregular occlusion masks in occluded images,

we rearrange valid pixels from ground truth and rendered

images into rectangular formats suitable for SSIM and

LPIPS patch-based evaluation. This rearrangement may

introduce slight variations in metrics compared to meth-

ods that directly compare original images, as the structural

changes can affect SSIM and LPIPS scores. However, these

differences are typically minimal and do not impact the

overall evaluation results.

Considering the unavoidable occlusions when capturing

real-world scenes, we calculate the rendering accuracy only

within the valid visible regions using masks. Therefore, we

suggest readers interpret the quantitative evaluation metrics

reasonably and place more emphasis on the qualitative re-

sults, which demonstrate the true rendering performance in

scenes with occlusion removal.

B. Dataset Details

B.1. Dataset Building Process

For the DeclutterSet, we capture each scene using either a

Canon R6 Mark II camera or an iPhone 12 Pro, maintain-

ing consistent exposure and focus settings throughout the

capture process. To ensure high-quality multi-view inputs,

we record continuous video while moving the camera in a

smooth arc trajectory around the scene. From each record-

ing, we extract 30-35 sequential frames at regular inter-

vals, creating a forward-facing dataset similar to the classic

NeRF format. We pay attention to select scenes with vary-

ing occlusion characteristics - different depths, scales, and

geometric complexity. Camera parameters are estimated

using COLMAP’s structure-from-motion pipeline. For oc-

clusion annotation, we used OR-NeRF’s efficient multiview

segmentation approach, requiring only point prompts on a

single view to generate consistent masks across all views.

B.2. Considerations

While OCC-NeRF [58] provides some occlusion datasets,

community feedback (as evidenced by multiple issues

raised in its repository) has identified several issues with

their data. These include blurry images, missing parame-

ters, and even mismatches in ground truth for testing. Even

the authors’ model and code failed to reproduce their re-

ported results.

To address these shortcomings, we constructed Declut-

terSet, which includes a variety of occlusion types, varying

occlusion sizes and camera motions, and different occluder

distances. As stated in the main text, it combines reliable

data from existing references and is augmented with newly

captured scenes, offering a new and robust benchmark for

the community.
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Figure 8. Additional Qualitative Comparisons With Baselines. Our method consistently produces desirable results, while generative

models still suffer from artifacts and floaters during rendering. Notably, DeclutterNeRF maintains geometric fidelity and cross-view

consistency in challenging occlusion scenarios with complex depth relationships. A detailed analysis of failure cases is provided in Sec. C.

B.3. Samples Exhibition

Figure 9 and Fig. 10 show more samples from our Declut-

terSet. We select image frames that are evenly distributed

to characterize our dataset: (i) wider distance distribution,

(ii) larger occluded regions, (iii) greater relative motion be-

tween viewpoints and occluders, and (iv) more uncertain

occluder shapes and mask layouts.

C. Additional Qualitative Results

Figure 8 shows additional visual results on our collected

dataset. Beyond normal results, our method demonstrates

remarkable robustness by producing high-quality render-

ings even when faces with incorrect camera parameters

from OCC-NeRF data. This issue originates from the OCC-

NeRF dataset itself. Specifically, while incorporating exist-

ing scenes to complement DeclutterSet, we observed that

the Railing scene in OCC-NeRF suffers from camera cal-

ibration inconsistencies. Although we attempted to re-

estimate the camera poses using COLMAP, the anoma-

lies persisted. Nonetheless, we retained this scene in our

dataset to reflect the realistic challenges posed by imper-

fect calibration—an inherent difficulty in occlusion removal

tasks. As shown, baseline methods without camera param-

eter optimization fail to generate converged results and co-

herent reconstructions. OCC-NeRF produces only blurred

representations, while our method successfully recovers a

clear scene despite the adverse calibration conditions.

Failure Cases. The label “FAIL” in qualitative results is

used to denote two distinct failure cases. (i) For SPIn-NeRF,

it indicates that reconstruction was not accessible even be-

fore rendering, due to the lack of reliable depth information

provided by COLMAP. (ii) For MVIP-NeRF, it refers to a

failure that occurred during rendering, where the training

process did not converge, resulting in extremely blurred and

semantically meaningless images.

To balance reconstruction quality and memory usage

when using SPIn-NeRF with COLMAP, we uniformly ap-

ply a downsampling factor of 4.

D. Statement

D.1. Ethics Statement

Due to concerns about the misuse of generative models and

image processing techniques, both 2D and 3D generation

have to face these issues. Our DeclutterNeRF, which does

not employ any generative priors, mitigates these concerns

to a certain extent. This approach helps to avoid potential

ethical issues associated with generative models while still

achieving effective results in our specific domain.

D.2. Open Source Statement

Through extensive experimentation with numerous base-

line methods, we have identified some opportunities for im-

provement in the field. Many technical repositories lack

proper maintenance and guidance. We recognize that to

achieve occlusion removal in NeRF, 3DGS and similar

fields, it is first necessary to remove the barriers that exist

in the dissemination and communication of these technolo-

gies. To this end, all code and data will be open-sourced

under the MIT license for community use, fostering trans-

parency and collaborative advancement in the field.



Figure 9. DeclutterSet Illustration (Part I). From the top to the bottom: (a) Orchids, (b) Railing, (c) Statue, (d) Ladder.



Figure 10. DeclutterSet Illustration (Part II). (e) Stone Column, (f) Lamp Post, (g) Chain Fence, (h) Chair Back.
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