
ARC-NeRF: Area Ray Casting for Broader Unseen View Coverage
in Few-shot Object Rendering

Supplementary Material

Hyperparameter Realistic Synthetic 360◦ [8] DTU [5] Shiny Blender [13]
& Balancing Weights 4-view 8-view 3-view 6-view 9-view 4-view

LR [1e−3, 1e−5] [2e−3, 2e−5] [1e−3, 1e−5]

Warm-up Iter. 512 1024 512 2048 512

ηOri.(for LOri.) 1e−1 1e−2 1e−1 1e−2 1e−1

ηlum.(for llum.) 1e−3 1e−4 1e−3 1e−4 1e−5 1e−3

η̃lum.(for l̃lum.) 1e−4 1e−5 1e−4 1e−5 1e−6 1e−4

Table A. Hyperparameters and balancing weights. Since our ARC-NeRF is built upon FlipNeRF, we follow the training details for
other hyperparameters, which are not mentioned here, as FlipNeRF. [α, β] denotes the annealing from α to β.

Figure A. Network architecture of ARC-NeRF. Our ARC-NeRF
estimates the additional output y, i.e. the relative luminance for
our auxiliary luminance estimation task.

A. Experimental Setting

Implementational details. Our ARC-NeRF is imple-
mented upon FlipNeRF [10], and we follow its overall train-
ing scheme. We utilize the scene space annealing strategy
during the initial training phase following [9–11]. Further-
more, we adopt the initial warm up and exponential decay
for the learning rate. We use the Adam optimizer [7] with
gradient clipping set to 0.1 for both each element of the
gradient value and the gradient’s norm. Our ARC-NeRF is
trained for 500 pixel epochs using a batch size of 4,096 on
four NVIDIA RTX 3090 GPUs. Additionally, since our pro-
posed Area Ray encompasses broader areas of unseen views
compared to a single ray, we set the masking threshold ψ as
45◦, which is smaller than that of FlipNeRF, to avoid over-
regularization effect of augmented rays. The related experi-
ment is demonstrated in Tab. C.

Hyperparameters. For additional details on hyperparam-
eters and loss balancing terms based on training views
and datasets, kindly refer to Tab. A. Note that our ARC-
NeRF follows the same hyperparameters as FlipNeRF for
other training losses and schemes which are not specified
in Tab. A.

B. Further Details of Method
Architectural details. Our ARC-NeRF leverages the net-
work architecture of mip-NeRF [1], which is commonly
used in several few-shot NeRF models [9–11, 17]. More-
over, our ARC-NeRF additionally estimates the relative lu-
minance y. Kindly refer to more details in Fig. A.

Total loss. Our ARC-NeRF is trained to maximize the
log-likelihood of the target pixel cGT for both sets of origi-
nal input rays R and our proposed Area Rays R̃, as well as
to minimize the mean squared errors (MSE) between the
ground-truth and estimated pixel values. Except our pro-
posed Llum., we use the same training losses as those of
FlipNeRF. Note that we use LMSE only for R and exploit a
batch of Area Rays instead of flipped reflection rays. Sum-
ming up, the total loss over a batch is calculated as follows:

LTotal = LMSE + Llum. + ηNLLLNLL + η̃NLLL̃NLL

+ ηUELUE + η̃UEL̃′
UE + ηBFCLBFC + ηOri.LOri.,

where Llum. = ηlum.llum. + η̃lum. l̃lum..

(1)

η’s and η̃’s represent the loss balancing weights for the orig-
inal input rays and additional Area Rays, respectively.

C. Additional Experiments
Viewing direction jittering. For Realistic Synthetic
360◦ [8] and Shiny Blender [13], which consist of inward-
facing synthetic scenes with objects located at the center,
we adopt the viewing direction jittering, which is a minor
additional strategy slightly improving the performance. We
simply add the Gaussian random noise to the input viewing
direction d to improve the robustness for the slight change



PSNR ↑ SSIM ↑ LPIPS ↓ Average Err. ↓
FlipNeRF [10] 16.47 0.866 0.091 0.095

ARC-NeRF
w/o view. jitter. 16.66 0.869 0.087 0.093
w/ view. jitter. 16.86 0.873 0.084 0.091

Table B. Effect of Viewing direction jittering. On Realistic Syn-
thetic 360◦ 4-view, we are able to achieve marginal performance
improvement while still outperforming FlipNeRF without the jit-
tering strategy.

ψ PSNR ↑ SSIM ↑ LPIPS ↓ Average Err. ↓
180◦ (None) 18.15 0.749 0.179 0.120
90◦ 18.63 0.762 0.163 0.110
75◦ 19.02 0.764 0.156 0.105
60◦ 18.94 0.766 0.154 0.105
45◦ 19.85 0.773 0.146 0.096
30◦ 18.78 0.765 0.160 0.107
15◦ 18.65 0.761 0.163 0.111

Table C. Comparison of masking thresholds. Our ARC-NeRF
excludes a set of Area Rays, whose angle θ between the origi-
nal input ray is over ψ, i.e. the target pixel photo-consistency is
relatively low considering the threshold ψ, from a training batch.
ψ = 180◦(None) uses a whole batch of newly generated Area
Rays.

of viewpoints. As shown in Tab. B, we are able to achieve
marginal improvement of rendering quality while still out-
performing its baseline, FlipNeRF, even without the jitter-
ing strategy.

Masking thresholds. Our ARC-NeRF utilizes an addi-
tional batch of Area Rays covering a broader area of un-
seen views, and the high-frequency components of sam-
ples along an Area Ray are adaptively regularized via In-
tegrated Positional Encoding (IPE) depending on the angle
between the original input direction and the estimated nor-
mal vector, i.e. the target pixel photo-consistency. As a re-
sult, with the same ψ = 90◦ as FlipNeRF, our ARC-NeRF
might suffer from the performance degradation due to over-
regularization. As demonstrated in Tab. C, our ARC-NeRF
achieves the best result with ψ = 45◦. The larger ψ be-
comes than 45◦, the worse the performance, as an Area
Ray covering too wide area of unseen views leads to over-
regularization, which adversely affects the training. On the
other hand, a smaller ψ than 45◦ also leads to poorer perfor-
mance, as the newly generated Area Rays are excessively
filtered, resulting in only a limited number of augmented
Area Rays being utilized for training. Note that the mask-
ing threshold ψ depends on the characteristics of casting
ray rather than being the hyperparameter which needs to be
finetuned elaboratively.

PSNR ↑ SSIM ↑ LPIPS ↓ Average ↓

FreeNeRF‡ [17] 19.92 0.781 0.125 0.086
FreeNeRF [17] 19.23 0.769 0.149 0.103
ARC-NeRF 19.85 0.773 0.146 0.096

FreeNeRF‡ [17] FreeNeRF [17] ARC-NeRF

Figure B. Quantitative and qualitative comparison with FreeN-
eRF on DTU 3-view. Although FreeNeRF achieves high-quality
of rendering with only a few images, it depends on the white and
black prior, which is highly heuristic based on the characteristics
of dataset. Our ARC-NeRF achieves comparable performance to
FreeNeRF without the heuristic prior for training. ‡ denotes the
W&B prior.

Additional results. Fig. B shows the comparison with
our ARC-NeRF, FreeNeRF [17], and FreeNeRF without
the white and black prior. While FreeNeRF achieves high-
quality rendering, it relies on a white and black prior, i.e. a
highly heuristic approach considering the specific dataset’s
characteristics. In contrast, our ARC-NeRF outperforms
FreeNeRF without relying on such priors, even showing
competitive performance compared to FreeNeRF with the
prior.

The quantitative comparisons including the 6/9-view
scenarios on DTU and more qualitative results are demon-
strated in Tab. D and Fig. C, respectively. Note that we
report the results of other methods from their original pa-
pers or [9–11], which outperformed the results from the
corresponding original paper by modified training curricu-
lum [9]. Our ARC-NeRF achieves competitive performance
among the SOTA methods. Furthermore, our supplementary
videos show the comparison with other methods on Realis-
tic Synthetic 360◦ and FreeNeRF on DTU.

D. Limitations and Future Work
Our proposed ARC-NeRF excels at capturing finer tex-
tures and details of object surfaces but shows limitations
when addressing complex backgrounds, such as unbounded
scenes composed of widely varying depths. This is due to
potential obstacles between cast rays, which hinder pixel
photo-consistency. Developing a new ray parameterization
that can cover broad unseen view areas across significantly
varied depths while effectively dealing with the obstacles
would be a meaningful extension toward few-shot view syn-
thesis for unbounded scenes as a future work.



Method PSNR ↑ SSIM ↑ LPIPS ↓ Avg. Err. ↓
3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view

Mip-NeRF [1] - 8.68 16.54 23.58 0.571 0.741 0.879 0.353 0.198 0.092 0.323 0.148 0.056
3DGS [6] 14.18 - - 0.628 - - 0.301 - - 0.191 - -

PixelNeRF [18]

Pre-training

16.82 19.11 20.40 0.695 0.745 0.768 0.270 0.232 0.220 0.147 0.115 0.100
PixelNeRF† [18] 18.95 20.56 21.83 0.710 0.753 0.781 0.269 0.223 0.203 0.125 0.104 0.090
SRF [3] 15.32 17.54 18.35 0.671 0.730 0.752 0.304 0.250 0.232 0.171 0.132 0.120
SRF† [3] 15.68 18.87 20.75 0.698 0.757 0.785 0.281 0.225 0.205 0.162 0.114 0.093
MVSNeRF [2] 18.63 20.70 22.40 0.769 0.823 0.853 0.197 0.156 0.135 0.113 0.088 0.068
MVSNeRF† [2] 18.54 20.49 22.22 0.769 0.822 0.853 0.197 0.155 0.135 0.113 0.089 0.069

DietNeRF [4]

Regularization

11.85 20.63 23.83 0.633 0.778 0.823 0.314 0.201 0.173 0.243 0.101 0.068
RegNeRF [9] 18.89 22.20 24.93 0.745 0.841 0.884 0.190 0.117 0.089 0.112 0.071 0.047
MixNeRF [11] 18.95 22.30 25.03 0.744 0.835 0.879 0.203 0.102 0.065 0.113 0.066 0.042
SimpleNeRF [12] 16.25 20.60 22.75 0.751 0.828 0.856 0.249 0.190 0.176 0.143 0.088 0.071
DiffusioNeRF [15] 16.20 20.34 25.18 0.698 0.818 0.883 0.160 0.093 0.046 0.128 0.072 0.036
SparseNeRF [14] 19.55 - - 0.769 - - 0.201 - - 0.102 - -
FreeNeRF‡ [17] 19.92 23.25 25.60 0.781 0.838 0.877 0.125 0.085 0.057 0.086 0.058 0.038
FreeNeRF [17] 19.23 22.77 25.59 0.769 0.835 0.877 0.149 0.088 0.057 0.103 0.063 0.039
FlipNeRF [10] 19.55 22.45 25.12 0.767 0.839 0.882 0.180 0.098 0.062 0.101 0.064 0.041
SparseGS [16] 18.89 - - 0.702 - - 0.229 - - 0.117 - -
ARC-NeRF 19.85 22.73 25.14 0.773 0.842 0.886 0.146 0.084 0.057 0.096 0.060 0.040

Table D. Additional quantitative comparison on DTU. Our ARC-NeRF shows competitive performance by outperforming other methods
on most metrics, even without relying on any dataset-specific priors. † and ‡ indicate fine-tuning and W&B prior, respectively.

mip-NeRF [1] MixNeRF [11] FreeNeRF [17] FlipNeRF [10] ARC-NeRF Ground Truth

(a) Realistic Synthetic 360◦ 8-view

mip-NeRF [1] RegNeRF [9] FreeNeRF‡ [17] FlipNeRF [10] ARC-NeRF Ground Truth

(b) DTU 6-view

(c) DTU 9-view

Figure C. Additional qualitative comparisons. Our ARC-NeRF achieves high-quality renderings with fine details and clearer texture.

References
[1] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter

Hedman, Ricardo Martin-Brualla, and Pratul P Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-
ral radiance fields. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 5855–5864,
2021. 1, 3

[2] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang,

Fanbo Xiang, Jingyi Yu, and Hao Su. Mvsnerf: Fast general-
izable radiance field reconstruction from multi-view stereo.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 14124–14133, 2021. 3

[3] Julian Chibane, Aayush Bansal, Verica Lazova, and Gerard
Pons-Moll. Stereo radiance fields (srf): Learning view syn-
thesis for sparse views of novel scenes. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern



Recognition, pages 7911–7920, 2021. 3
[4] Ajay Jain, Matthew Tancik, and Pieter Abbeel. Putting nerf

on a diet: Semantically consistent few-shot view synthesis.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 5885–5894, 2021. 3

[5] Rasmus Jensen, Anders Dahl, George Vogiatzis, Engin Tola,
and Henrik Aanæs. Large scale multi-view stereopsis eval-
uation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 406–413, 2014. 1

[6] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Trans. Graph., 42(4):139–1,
2023. 3

[7] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 1

[8] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021.
1

[9] Michael Niemeyer, Jonathan T Barron, Ben Mildenhall,
Mehdi SM Sajjadi, Andreas Geiger, and Noha Radwan. Reg-
nerf: Regularizing neural radiance fields for view synthesis
from sparse inputs. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
5480–5490, 2022. 1, 2, 3

[10] Seunghyeon Seo, Yeonjin Chang, and Nojun Kwak. Flipnerf:
Flipped reflection rays for few-shot novel view synthesis. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 22883–22893, 2023. 1, 2, 3

[11] Seunghyeon Seo, Donghoon Han, Yeonjin Chang, and Nojun
Kwak. Mixnerf: Modeling a ray with mixture density for
novel view synthesis from sparse inputs. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 20659–20668, 2023. 1, 2, 3

[12] Nagabhushan Somraj, Adithyan Karanayil, and Rajiv
Soundararajan. Simplenerf: Regularizing sparse input neural
radiance fields with simpler solutions. In SIGGRAPH Asia
2023 Conference Papers, pages 1–11, 2023. 3

[13] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler,
Jonathan T Barron, and Pratul P Srinivasan. Ref-nerf: Struc-
tured view-dependent appearance for neural radiance fields.
In 2022 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 5481–5490. IEEE, 2022. 1

[14] Guangcong Wang, Zhaoxi Chen, Chen Change Loy, and Zi-
wei Liu. Sparsenerf: Distilling depth ranking for few-shot
novel view synthesis. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 9065–9076,
2023. 3

[15] Jamie Wynn and Daniyar Turmukhambetov. Diffusionerf:
Regularizing neural radiance fields with denoising diffu-
sion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4180–
4189, 2023. 3

[16] Haolin Xiong, Sairisheek Muttukuru, Rishi Upadhyay,
Pradyumna Chari, and Achuta Kadambi. Sparsegs: Real-

time 360 {\deg} sparse view synthesis using gaussian splat-
ting. arXiv preprint arXiv:2312.00206, 2023. 3

[17] Jiawei Yang, Marco Pavone, and Yue Wang. Freenerf: Im-
proving few-shot neural rendering with free frequency reg-
ularization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8254–
8263, 2023. 1, 2, 3

[18] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelnerf: Neural radiance fields from one or few images.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4578–4587, 2021. 3


	Experimental Setting
	Further Details of Method
	Additional Experiments
	Limitations and Future Work

