HumMorph: Generalized Dynamic Human Neural Fields from Few Views

Supplementary Material

A. Additional Details Regarding the Method

Rendering equations. In Sec. 3 we define the density and
color functions &, c of a NeRF in observation space corre-
sponding to pose 2. We use volumetric rendering to synthe-
size the target image. Specifically, the color of each pixel u
in the rendering is computed as follows:
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where z; € R3 for 1 < i < M are points along ray r,,
passing through pixel w in the image plane and Az; =
||z;+1 — i]|2. Following HumanNeRF [37], we only sam-
ple the query points z; inside a 3D bounding box estimated
from the human skeleton in pose €.

Unprojection and undeformation. See Fig. 6 for an
illustration of the unprojection and undeformation operation
defined by Eq. (1).

Network training and loss functions. In a single train-
ing step, we render G = 6 patches P; of size H x H with
H = 32, which are used to compute Ly pps with a VGG
backbone. We also have
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where u is a pixel in patch P;, C(u) is the rendered color
of u (as in Eq. (7)) and C (u) is the ground truth color of w.
The deformation consistency component Lqpsis €ncourages
consistency between the forward and backward deforma-
tions 7', Ty (respectively; see Sec. 3.2). Recall that, intu-
itively, we should have T’ (T3 (z.,2),Q) = z. for a point
x. in canonical space and pose 2. However, with the LBS
deformation model, this condition is rarely satisfied and it
depends on the motion weights W. Following MonoHu-
man [39], we include

d if d>n,
£consis = B K (10)
0 otherwise,

where d = ||z, — T (Ty(xp, ), Q)3 for a point x,, in the
observation space with pose €2, in the loss function to regu-
larize the motion weights. We compute Loqsis On all query
points used in volumetric rendering and use = 0.05.

B. Additional Implementation Details

To better preserve the low-level information, we concate-
nate the feature maps F; with resized input images I;.
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Figure 6. Diagram of the unprojection and undeformation opera-
tion defined by Eq. (1).

Hence, the pixel-aligned features f;x have dimensionality
32 4+ 3. Both the motion weights and the voxel features
VoluMorph submodules output a 32-dimensional voxel grid
of size 32 along the X, Y axes and size 16 along the Z axis,
which corresponds to the human body shape. The output of
the voxel features VoluMorph submodule is directly sam-
pled to create f,ox features, which are also 32-dimensional.
The output feature volume for motion weights correction is
additionally projected (coordinate-wise) into K = 24 chan-
nels (one per joint) using a 1 X 1 convolution. The output
of the convolution is the observation-conditioned correction
AW (Z) in log-space, which is combined with the initial es-
timate Wy as follows

W (Z) = softmax (AW (Z) + log Wy). (11)

Feature fusion module. Here we provide additional de-
tails on the implementation of the feature fusion module in-
troduced in Sec. 3.1. Let z. be a query point in canonical
space. We describe how our feature fusion module com-
putes the final feature f for a single x., which, in practice,
is applied independently to each query point.

The feature vectors are first extended with positional en-
codings of spatial information on the query point x.: its
coordinates, the viewing direction on x. in the target ren-
der transformed to canonical space, and the vector from x.
to the nearest joint in the skeleton. We additionally append
the motion weights W sampled at x., which serve as proxy
information on the body shape. For the pixel-aligned fea-
tures, we also append the viewing direction (transformed to
canonical space) under which the features were observed.
The extended features are then aligned using two separate
2-layer MLPs with hidden dimensions 128 and output di-
mensions 64. The aligned features are processed by a trans-
former encoder layer with 4 attention heads and internal di-



mension 64.

The standalone spatial information on the query point
(i.e. coordinates, viewing direction, vector to the nearest
joint, and sampled motion weights) is aligned with the fea-
tures using a 2-layer MLP with hidden dimension 128 and
output dimension 64. The final feature f is computed with
a 4-head attention layer with internal dimension 64, where
the (aligned) standalone spatial information on x. is used
as a query and the transformer encoder’s outputs are used
as keys/values.

Optimization. We optimize the parameters of our model
using the Adam optimizer with learning rate 2 x 10~ for
the motion weights correction submodule and 2 x 10~ for
the rest. We additionally delay the optimization of the mo-
tion weights module until iteration SK. We found that op-
timizing the motion weights end-to-end with the rest of the
pipeline can, in some cases, introduce training instabilities,
which we contain by clipping the loss gradients to L2 norm
of 7.5. We run our optimization for ~300K iterations on 4
NVIDIA RTX 6000 GPUs, which takes about 5 days.

C. More Details on the Experiments

Selection of cameras. To reduce the computational cost of
running our experiments, we subsample the camera sets of
both datasets. For training and evaluation on the HuMMan
dataset [2] we drop the cameras with indices 2 and 7 (the
ones with the highest vertical position). For training on the
DNA-Rendering dataset [5] we keep cameras with index ¢
such that c =1 mod 4 (12 cameras total), while for evalu-
ation we use cameras with index ¢ such that c = 1 mod 8
(6 cameras total). We use the same camera subset for train-
ing and evaluation of all models, including baselines.

Image resolution. During training of our method on
both datasets, we render the frames (patches) at % of the
original resolution, i.e. 480 x 270 for the HuMMan dataset
and 512 x 612 for the DNA-Rendering dataset. We train
SHERF [11] and GHuNeRF [18] on the HuMMan dataset
using % of the original resolution, i.e. 634 x 356 and using
% of the original resolution on the DNA-Rendering dataset,
i.e. 512x612. We evaluate our method and the baselines us-
ing % of the original resolution on the HuMMan dataset and
using i of the original resolution on the DNA-Rendering
dataset.

Subsampling frames. We subsample the frames of all
motion sequences in the DNA-Rendering dataset [5] to a
maximum of 30 frames per sequence. We perform the
subsampling at constant intervals across the full length of
each sequence. We use the full sequences in the HuMMan
dataset [5].

Selection of observed frames. During training, our
models are provided with 7' = 2 observed frames, which
are uniformly sampled from the full motion sequence (with-
out the target frame). The observed frames are sampled

from the same camera as the target frame. During monoc-
ular training, SHERF [11] (Mo) is provided with a random
frame (except the target frame) from the same camera as the
target frame. GHuNeRF during training is supplied with 4
randomly sampled observed frames.

For evaluation, we split the motion sequences approx-
imately in half at frame L%J, where T is the sequence
length, and provide observations from the first half, while
we measure the quality of reconstruction on the frames from
the second half. Specifically, when 7" is the motion se-
quence length (in frames), the observed frames are selected

based on the table below:

Num. observ. ‘ Indices of observed frames

1 0

2 0,[T- 1]

3 0,73, [T 2]

4 0,173, [T 3} T ¢

Note that, as SHERF [11] only accepts a single observed
frame, in the quantitative experiments it is provided with the
first frame of each sequence. We provide qualitative results
of SHERF given other observed frames. In the qualitative
results, the index of the observed frame number ¢ is the last
entry of row ¢ in the table above.

C.1. Estimated Body Shape and Pose Parameters

To obtain the estimated SMPL [23] pose and shape param-
eters, we use an off-the-shelf HybrIK [19] model for each
frame in the motion sequences independently. We then re-
train our models, SHERF (Mo) and GHuNeRF(+) using
a mixture of accurate and estimated parameters. At each
training step, we use the estimated parameters with proba-
bility p or the accurate parameters with probability 1 — p,
where p increases linearly throughout the training from 0 at
the beginning to 0.75 at roughly half of the training process.

When using estimated body parameters, during both
training and evaluation, we provide the models with the es-
timated body shape and pose parameters for the observed
frames. However, we always provide accurate pose param-
eters for the target frames, which is motivated by the prac-
tical scenario, where pose parameters are either transferred
from a different motion or generated with a separate model.
Furthermore, since the target frame is not known in prac-
tice, estimating the target pose is not meaningful. In con-
trast, the body shape is always assumed to be unknown and,
therefore, has to be estimated from the observed frames.
Note that, in this experiment, we use the ground-truth cam-
era poses for both models.

D. Additional Results

Note that a fair comparison to the related GNH [24] is not
currently possible since the code and models have not yet
been made publicly available.



Method Accurate body parameters Estimated body parameters
PSNRT LPIPS*| SSIM? | PSNRT LPIPS*] SSIM 1
SHERF (Mo) 26.95 44.12 0.9615 24.23 61.44 0.9450
SHERF (MV) 26.35 43.68 0.9603 - - -
GHuNeRF+ (1 obs.) | 23.89 44.00 0.9527 23.17 50.24 0.9480
GHuNeRF+ (2 obs.) | 23.97 43.72 0.9530 23.27 49.96 0.9483
GHuNeRF+ (4 obs.) | 24.00 43.66 0.9531 23.31 49.86 0.9485
GHuNeRF+ (8 obs.) | 24.01 43.64 0.9531 23.32 49.85 0.9485
GHuNeREF (1 obs.) 23.87 63.01 0.9474 23.30 68.84 0.9425
GHuNeRF (2 obs.) 23.88 62.98 0.9474 23.34 68.76 0.9427
GHuNeRF (4 obs.) 23.89 63.02 0.9474 23.36 68.76 0.9427
GHuNeRF (8 obs.) 23.88 63.06 0.9474 23.36 68.75 0.9427
QOurs (1 observed) 26.70 33.43 0.9638 25.08 42.28 0.9553
Qurs (2 observed) 27.38 30.20 0.9670 25.33 40.93 0.9568
Ours (3 observed) 27.64 28.88 0.9683 25.40 40.53 0.9573
Ours (4 observed) 27.66 28.72 0.9685 25.40 40.52 0.9574

Table 3. Extended quantitative comparison of our method with SHERF [11] and GHuNeRF [18] with various numbers of observed views
on the HuMMan [2] dataset. SHERF (Mo) is trained in our monocular framework, and SHERF (MV) is the official model from [11]
(multi-view trained). GHuNeRF+ contains the added LPIPS loss. LPIPS* = LPIPS x 102.

Method Accurate body parameters Estimated body parameters
PSNR1 LPIPS*| SSIM? | PSNR1T LPIPS* | SSIM 1
SHERF (Mo) 28.49 48.22 0.9635 26.93 61.97 0.9536
SHERF (MV) 27.78 49.52 0.9614 - - -
GHuNeRF+ (1 obs.) | 26.59 53.10 0.9578 26.19 56.46 0.9547
GHuNeRF+ (2 obs.) | 26.69 52.92 0.9581 26.28 56.16 0.9550
GHuNeRF+ (4 obs.) | 26.70 52.93 0.9582 26.31 56.11 0.9552
GHuNeRF+ (8 obs.) | 26.71 52.94 0.9583 26.32 56.09 0.9552
GHuNeREF (1 obs.) 27.59 70.05 0.9562 27.12 74.74 0.9520
GHuNeRF (2 obs.) 27.72 69.76 0.9566 27.24 74.59 0.9524
GHuNeRF (4 obs.) 27.78 69.71 0.9568 27.28 74.54 0.9527
GHuNeREF (8 obs.) 27.81 69.71 0.9569 27.31 74.58 0.9527
Ours (1 observed) 27.86 40.25 0.9630 27.00 47.21 0.9575
QOurs (2 observed) 28.35 38.03 0.9651 27.31 45.45 0.9592
Qurs (3 observed) 28.63 36.88 0.9663 27.45 44.79 0.9599
QOurs (4 observed) 28.65 36.89 0.9664 27.46 44.76 0.9601

Table 4. Extended quantitative comparison of our method with SHERF [11] and GHuNeRF [18] with various numbers of observed views
on the DNA-Rendering [5] dataset. SHERF (Mo) is trained in our monocular framework, and SHERF (MV) is trained in the multi-view
framework of [11]. GHuNeRF+ contains the added LPIPS loss. LPIPS* = LPIPS x 10°.

See Tab. 3 and Tab. 4 for an extended quantitative com-
parison to SHERF [11] (monocular — Mo and multi-view
— MV), GHuNeRF [18] and GHuNeRF+ on HuMMan [2]
and DNA-Rendering [5]. SHERF (MV) is trained in the
original framework of [11], i.e. the observed view is in the
same pose as the target view but captured from a different
viewpoint. Note that SHERF (MV) is still conditioned on
a single observed view. For ‘SHERF (MV)‘ on the HuM-
Man dataset we use the official models of [11], while for the
DNA-Rendering dataset we retrain it using the multi-view
training framework.

Fig. 7 and Fig. 8 show an extended qualitative compar-
ison between our method with T € {1,2, 3,4} observed
views, SHERF [11] (Mo) and GHuNeRF [18] on the HuM-
Man [2] and DNA-Rendering [5] datasets, respectively. As
discussed in Sec. 4.4, SHERF frequently struggles to match
the observed view to the underlying geometry, which results
in incorrect renders in novel poses with ‘phantom® limbs
(typically arms) imprinted on the torso (see the top 2 sub-
jects in Fig. 7 and top two subjects in Fig. 8). In most cases,
this problem is observed regardless of which view SHERF
observes — as long as the arms of the subject overlap with



their body in the observed view, they are usually imprinted
somewhere on the torso. While our method sometimes dis-
plays a similar pattern when it observes a single view, it
matches the geometry correctly and resolves this issue when
provided with 2 (or more) observations. To achieve that,
it has to combine information from available observations
while resolving occlusions and/or making use of the prior
(e.g. smoothness), as information from any of the observa-
tions alone is not enough to eliminate the artifacts (which is
demonstrated by SHERF results).

D.1. Extended Results with Estimated Body Shape
and Pose Parameters

Fig. 9 and Fig. 10 show an extended qualitative compari-
son of our method with T' € {1,2,3,4} observed views
to SHERF (Mo) and GHuNeRF, on the HuMMan and
DNA-Rendering datasets (respectively) when using esti-
mated body shape and pose parameters. The renders pro-
duced by our method are significantly sharper compared
to SHERF and, in contrast to the baselines, our method
correctly replicates most of the details found in the ob-
served views. Moreover, our method generates fewer arti-
facts compared to SHERF when filling in missing informa-
tion using prior (see e.g. the legs and shoes of all subjects in
Fig. 10).

D.2. Video Qualitative Results

We provide video versions of Fig. 7, Fig. 8, Fig. 9 and
Fig. 10 in the attached files named fig_x_video—i.mp4,
where z is the figure number and 7 is the sequence number
(from top to bottom).

E. Broader impact

We acknowledge that our method could potentially have a
negative societal impact if misused to create fake images
or videos of real people. Any public deployments of this
technology should be done with great care to ensure that
ethical guidelines are met and with safeguards in place. We
will release our code publicly to aid with countermeasure
analysis.
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Figure 7. Extended qualitative comparison between our method, SHERF (Mo), and GHuNeRF on the HuMMan dataset. Numbers in
parentheses indicate the range of observed views supplied to the respective models. Best viewed in color and zoomed in for details.
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Figure 8. Extended qualitative comparison between our method, SHERF (Mo), and GHuNeRF on the DNA-Rendering dataset. Numbers
in parentheses indicate the range of observed views supplied to the respective models. Best viewed in color and zoomed in for details.
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Figure 9. Extended qualitative comparison between our method, SHERF (Mo), and GHuNeRF on the HuMMan dataset when using
estimated body shape and pose parameters. Numbers in parentheses indicate the range of observed views supplied to the respective
models. Best viewed in color and zoomed in for details.
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Figure 10. Extended qualitative comparison between our method, SHERF (Mo), and GHuNeRF on the DNA-Rendering dataset when
using estimated body shape and pose parameters. Numbers in parentheses indicate the range of observed views supplied to the respective
models. Best viewed in color and zoomed in for details.
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