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7. Finding Previous Optimal Camera Poses
To find previous D optimal camera poses, we formulate a
reward-collection optimization problem on a graph. In this
graph, the nodes represent camera positions (i.e., the trans-
lations in the camera poses) with each node assigned a re-
ward corresponding to the negative value of the preceding
training loss. The edges represent Euclidean distances be-
tween each camera pair’s positions. The goal is to find a
path that collects as much reward as possible, subject to
constraints on the total number of visited nodes and cam-
era view coverage. Concretely, the objective optimization
problem can be formulated as

max

|Pp|∑
k=1

xkRk (15)

s.t.

|Pp|∑
k=1

xk = D (16)

S(K) ≥ Sth,K = {k|xk = 1, k = 1, . . . , |Pp|} (17)
E(xk) ≤ 1,∀k ∈ {1, . . . , |Pp|} (18)

where xk is the binary decision variable: xk = 1 if node k
is visited otherwise xk = 0. S(K) is the shortest path that
connects all the selected nodes. E(xk) is the number of in-
coming edge of each selected node. The first constraint (16)
makes sure that only D previous camera poses are selected.
The second constraint (17) means that the view coverage of
the selected cameras is larger than a threshold. This is be-
cause a large field of view coverage of the selected cameras
improves the accuracy of the camera pose estimation. The
third constraint (18) guarantees that every node only has
one incoming edge. In other words, every node is visited at
most once. Consequently, this reward-collection optimiza-
tion problem can be viewed as a hybrid of the Knapsack
Problem and the Travelling Salesperson Problem, which is
an NP-hard problem.

Related Work for Reward-Collection Optimization
Problem. The reward collection problem, also named ori-
enteering problem, is an optimization issue that aims to de-
termine the most efficient route for visiting multiple loca-
tions while maximizing the value or score of each place
seen, all within a specified time frame and beginning and
ending at a particular point [14]. This problem is widely
utilized in the tourism sector [50], robot routing [38], food
delivery [49] and transportation control [31]. As the ori-
enteering problem belongs to the NP-hard class of prob-

lems, no algorithm can solve it optimally within a reason-
able amount of time [17]. Different from the traditional ori-
enteering problem, the optimization problem in this paper
is more complex. Firstly, we do not limit the start and end
points, and at the same time, we have a limitation on the
number of accessible points, which makes it impossible to
apply the existing proposed approaches to our method.

Algorithm 1 Brute-Force for Selecting Cameras

1: Generate all possible D camera combinations K.
2: Initialize B = ∅ and b = −∞.
3: for K ∈ K do
4: Use Breath-First-Search to find the shortest path
S(K) that visits all the nodes in K.

5: if S(K) ≥ Sth then
6: Sum the total reward R of K nodes.
7: if R ≥ b then
8: B = K
9: b = R

10: end if
11: end if
12: end for
13: Return B

Brute-Force Method. The straightforward approach to
address this problem is the Brute-Force method, demon-
strated in Algorithm 1. This method involves: (1) Deter-
mining the shortest path for visiting all nodes for each D
camera combination. (2) Selecting the camera combination
with the highest total rewards, while ensuring compliance
with all constraints. However, the time complexity of this
approach is O((2D ×D)×

(
N
D

)
), where

(
N
D

)
represents the

number of D-combinations derived from a given set of N
previous camera poses. 2D × D is the time complexity of
finding the shortest path for each D camera combination.
While this method guarantees an optimal solution, it be-
comes impractical for large numbers of nodes due to its time
complexity.

Proposed Greedy Algorithm. Let G(V,E) be the graph
of the previous camera poses, where V denotes the set of
cameras (nodes) and E denotes the set of edges connecting
each pair of two cameras. Let ei,j = ej,i, ei,j ∈ E, ej,i ∈ E
denote the edge between camera i and j. Note that G(V,E)
is an undirected weighted complete graph. The core concept
of our greedy algorithm is to traverse all unvisited nodes
starting from a specific node. During this process, the algo-
rithm calculates the approximate edges between each pair



of the current node and its connected unvisited node, subse-
quently selecting the node with the maximum approxima-
tion edge as the next starting node. This process is repeated
until a total of D nodes have been selected. The complete
description of the greedy algorithm is outlined in Algorithm
2.

Step 1 (line 1 to line 2): Introducing an auxiliary starting
node V0 into the graph, which establishes connections to all
nodes with an edge length of 0. We define a set B to keep
track of the visited nodes during traversal and initialize it as
B = V0. Additionally, the current node index is initialized
as k = 0.

Step 2 (line 4 to line 10): Identifying all the connected
nodes of the current node Vk that have not been visited yet
(i.e., Vi /∈ B). Based on the reward Ri and the edge length
ek,i for each unvisited node, we compute the approximation
edge length êk,i and insert it into a temporary set Ê. Specif-
ically, êk,i = Ri+λ(

Sth

D −ek,i), where λ is a parameter for
adjusting the units ofRi and Sth

D −ek,i. This approximation
edge is similar to the Lagrange multiplier [4] for handling
the constraint (17).

Step 3 (line 11 to line 12): Selecting the node with the
maximum êk,i as the next visited node, updating the current
index as k = argmax Ê, and inserting the next visited node
into the set of visited nodes B.

Step 4: Repeating Step 2 and Step 3 until the greedy
algorithm has visited a total of D nodes.

Algorithm 2 Proposed Greedy Algorithm

1: Add an auxiliary starting node V0 linking all the nodes.
2: Initialize the visited set B = {V0} and k = 0.
3: while |B| < D + 1 do
4: Ê = {}
5: for Vi ∈ V do
6: if Vi /∈ B then
7: êk,i = Ri + λ(Sth

D − ek,i)

8: Ê.append(êk,i)
9: end if

10: end for
11: k = argmax Ê
12: B.append(Vk)
13: end while
14: Return B.remove(V0)

The time complexity of our greedy algorithm is O(D ×
N logN), which reduces computation time by several or-
ders of magnitude.

Comparison of Brute-Force Method with Ours. Here,
we show the performance comparison of Brute-Force
Method and our greedy algorithm in terms of PSNR and
computation time. As the results in Table 3 and 4, IL-NeRF
can achieve comparable PSNR with Brute-Force method,

however, the runtime of the Brute-Force method is several
orders of magnitude larger than that of our proposed greedy
algorithm, which makes the Brute-Force method impracti-
cal for incremental training scenarios.

Table 3. Performance comparison of Brute-Force method and our
IL-NeRF on the Mip-NeRF360. IL-NeRF can achieve compara-
ble PSNR with Brute-Force method, however, the runtime of the
Brute-Force method is several orders of magnitude larger than our
proposed greedy algorithm.

Scene Method PSNR running time

Bicycle Brute-Force 22.36 5 days 6 hours
Greedy (Ours) 22.34 10.92 ms

Bonsai Brute-Force 28.96 10 days 8 hours
Greedy (Ours) 28.96 25.57 ms

Counter Brute-Force 27.86 10 days 2 hours
Greedy (Ours) 27.82 23.78 ms

Garden Brute-Force 24.83 4 days 18 hours
Greedy (Ours) 24.82 9.87 ms

Kitchen Brute-Force 29.34 11 days 6 hours
Greedy (Ours) 29.34 28.39 ms

Room Brute-Force 31.49 12 days 10 hours
Greedy (Ours) 31.45 37.58 ms

Stump Brute-Force 24.91 4 days 12 hours
Greedy (Ours) 24.89 8.73 ms

Table 4. Performance comparison of Brute-Force method and our
IL-NeRF on the NeRF-real360 and Block-NeRF. IL-NeRF can
achieve comparable PSNR with Brute-Force method, however, the
runtime of the Brute-Force method is several orders of magnitude
larger than our proposed greedy algorithm.

Scene Method PSNR running time

Pinecone Brute-Force 22.96 4 days 10 hours
Greedy (Ours) 22.93 9.58 ms

Vasedeck Brute-Force 26.24 5 days 2 hours
Greedy (Ours) 26.15 10.61 ms

Block-NeRF Brute-Force 26.63 20 days 5 hours
Greedy (Ours) 26.58 45.89 ms

7.1. Implementation Details
The pipeline of IL-NeRF is summarized in Algorithm 3.
We implement our framework following the architecture of
Instant-NeRF [23, 34]. We use two separate Adam opti-
mizers for NeRF and camera poses refinement respectively,
with an initial learning rate of 0.01 for NeRF and an ini-
tial learning rate of 0.005 for pose refinement. The learning
rate of the NeRF model decays every iteration by multiply-
ing with 0.9954 (exponential decay), and the learning rate
of the pose refinement decays every 100 iterations with a



Algorithm 3 IL-NeRF Pseudo Code

1: Initialize Pp = ∅.
2: for t = 0 do
3: Estimate camera poses Pc

0 from G0

4: Jointly train NeRF network Θ0 with camera poses
5: Pp = Pp

⋃
Pc
0

6: end for
7: for t = 1 to t = T do
8: Copy and freeze as Θ∗

t−1

9: Obtain past training data Cp by F(Pp,Θ∗
t−1)

10: Align the camera pose Pc
t based on Pp

11: Jointly train NeRF network Θt with camera poses
12: Pp = Pp

⋃
Pc
t

13: end for

multiplier of 0.9. We train the network in each incremen-
tal step for Mip-NeRF360 with 30k iterations and D = 10,
NeRF-real360 with 20k iterations and D = 10 and Block-
NeRF with 40k iterations and D = 50.

8. More Comparisons for Results
In the main text, we only show PSNR, SSIM and LPIPS for
some scenes of the datasets, and here we give the full re-
sults. Table 5 shows the results obtained by IL-NeRF and
baseline methods on the Mip-NeRF360 dataset with seven
real-world indoor and outdoor scenes. Additionally, Table 6
also shows the results obtained on the NeRF-real360 dataset
with two real-world object-orientation scenes. From the
results, we can see that IL-NeRF outperforms the original
NeRF and achieves comparable results with CLNeRF.

Furthermore, we compare the original NeRF and IL-
NeRF on two scenes, the ’Kitchen’ and ‘Counter’ scenes
in the Mip-NeRF360 dataset. Here, we give more visual-
ization results of original NeRF and IL-NeRF on all scenes
of three datasets.

Figure 10 to Figure 14 provide additional insight by pre-
senting a qualitative comparison of the performance of the
original NeRF and IL-NeRF. Specifically, we demonstrate
the rendering results on the first task after each incremental
training. It is evident that the original NeRF suffers from the
catastrophic forgetting problem, resulting in images with
significant distortions such as noise and blur, whereas IL-
NeRF generates highly realistic images with quality compa-
rable to the ground truth. This observation indicates that IL-
NeRF is highly effective in mitigating the forgetting prob-
lem and addressing the coordinate shifting issue.

9. Ablation Study
In the main paper, we analyze the effectiveness of the cam-
era coordinate alignment and the pose refinement that has
been added to IL-NeRF on the scene ’Garden’. Here, we

give more numerical results for the ablation study.
Effect of Pose Selection. Table 7 shows the performance

comparison of our camera pose selection method with ran-
dom selection and myopic selection on PSNR. IL-NeRF
surpasses the other two methods, because it ensures the
quality of rendered images used as references while pro-
viding a broader camera view coverage. Table 8 shows the
PSNR of IL-NeRF across varying values of D on the ‘Bi-
cycle’ scene from the Mip-NeRF360 dataset. As depicted,
when D is a small value, the lack of adequate reference im-
ages results in the estimated camera poses of the incoming
image data deviating from the original camera pose coor-
dinate system, thereby leading to considerably poor ren-
dering. As the value of D increases, the estimated cam-
era poses of the incoming image data become increasingly
precise, and thus the PSNR increases. Note that an exces-
sively large value of D introduces poorly rendered cameras,
subsequently leading to a decrease in PSNR. To identify the
optimal D camera poses, we address a reward collection op-
timization problem on a graph.

Effect of Transfer Matrices and Effect of Pose Re-
finement. Table 9 to Table 10 show the performance com-
parison of the original NeRF, CLNeRF, IL-NeRF, IL-NeRF
w/o TM, and IL-NeRF w/o PR on all three datasets. As
we can see, IL-NeRF outperforms the original NeRF and
achieves comparable results with CLNeRF. The results re-
veal a significant decline in performance on all test data
without the transfer matrices (i.e., IL-NeRF w/o TM). This
decline can be attributed to separate camera pose estimation
for two tasks resulting in camera poses in two independent
coordinate systems, which could mislead the model during
training, leading to decreased performance. The results of
IL-NeRF w/o PR, indicate that IL-NeRF with pose refine-
ment outperforms IL-NeRF without it as the aligned camera
poses by the transfer matrices may still contain noise and
inaccuracies.

10. Camera Pose Alignment
Figure 15 shows the camera pose trajectories of GT and
IL-NeRF. We treat the COLMAP [45] estimation from all
training images as ground-truth (GT) camera poses. As
we can see, IL-NeRF recovers accurate camera poses due
to the help of incremental camera pose alignment. Table
11 shows the quantitative comparison of camera pose esti-
mation accuracy of NeRF-SLAM, NoPe-NeRF and our IL-
NeRF. Among our baselines, only NeRF-SLAM indepen-
dently estimates camera poses, while the others need the
camera poses estimated by COLMAP from all training im-
ages. Thus, we compare the camera pose estimation accu-
racy of IL-NeRF, NeRF-SLAM, and NoPe-NeRF. We use
mean square error as the metric. IL-NeRF recovers more
accurate camera poses with the help of the proposed cam-
era pose alignment.



Table 5. Performance comparison on the Mip-NeRF360 dataset with the baselines: PSNR, SSIM, and LPIPS. IL-NeRF outperforms the
original NeRF, EWC, NeRF-SLAM and achieves comparable results with CLNeRF.

Scene Method Pose PSNR ⇑ / SSIM ⇑ / LPIPS ⇓
G0 G1 G2 G3

Bicycle

NeRF Yes 22.76 / 0.61 / 0.33 18.58 / 0.47 / 0.46 20.03 / 0.52 / 0.43 20.03 / 0.52 / 0.44
EWC Yes 22.76 / 0.61 / 0.33 18.80 / 0.47 / 0.45 19.41 / 0.51 / 0.43 19.89 / 0.52 / 0.43

CLNeRF Yes 22.88 / 0.62 / 0.33 20.23 / 0.49 / 0.43 22.03 / 0.53 / 0.39 22.18 / 0.54 / 0.41
NeRF-SLAM No 22.78 / 0.61 / 0.33 19.67 / 0.48 / 0.45 21.37 / 0.53 / 0.41 21.61 / 0.53 / 0.42

IL-NeRF No 22.90 / 0.62 / 0.33 19.84 / 0.48 / 0.44 22.05 / 0.54 / 0.40 22.34 / 0.55 / 0.40

Bonsai

NeRF Yes 33.30 / 0.93 / 0.07 25.47 / 0.75 / 0.25 23.53 / 0.66 / 0.34 22.12 / 0.68 / 0.35
EWC Yes 33.30 / 0.93 / 0.07 25.62 / 0.75 / 0.25 22.35 / 0.66 / 0.33 21.51 / 0.68 / 0.34

CLNeRF Yes 33.48 / 0.93 / 0.07 29.93 / 0.88 / 0.15 28.03 / 0.84 / 0.18 28.18 / 0.84 / 0.21
NeRF-SLAM No 33.32 / 0.93 / 0.07 29.13 / 0.84 / 0.21 28.01 / 0.79 / 0.29 26.85 / 0.80 / 0.29

IL-NeRF No 33.54 / 0.93 / 0.07 30.73 / 0.89 / 0.12 29.77 / 0.86 / 0.16 28.96 / 0.85 / 0.18

Counter

NeRF Yes 32.12 / 0.91 / 0.07 24.62 / 0.72 / 0.25 21.94 / 0.65 / 0.34 20.30 / 0.62 / 0.37
EWC Yes 32.12 / 0.91 / 0.07 23.83 / 0.72 / 0.25 22.56 / 0.65 / 0.33 21.11 / 0.61 / 0.36

CLNeRF Yes 32.17 / 0.92 / 0.07 29.58 / 0.86 / 0.14 28.03 / 0.82 / 0.18 28.28 / 0.85 / 0.18
NeRF-SLAM No 31.75 / 0.91 / 0.07 28.30 / 0.83 / 0.21 26.84 / 0.79 / 0.28 25.30 / 0.77 / 0.31

IL-NeRF No 32.13 / 0.91 / 0.07 29.63 / 0.87 / 0.12 28.56 / 0.85 / 0.15 27.82 / 0.83 / 0.17

Garden

NeRF Yes 24.70 / 0.71 / 0.20 22.34 / 0.64 / 0.25 20.17 / 0.59 / 0.31 19.42 / 0.54 / 0.38
EWC Yes 24.70 / 0.71 / 0.20 23.38 / 0.63 / 0.24 20.09 / 0.58 / 0.31 19.81 / 0.54 / 0.37

CLNeRF Yes 24.72 / 0.73 / 0.19 24.93 / 0.72 / 0.18 24.68 / 0.69 / 0.22 24.48 / 0.67 / 0.21
NeRF-SLAM No 24.72 / 0.71 / 0.20 24.03 / 0.69 / 0.23 23.50 / 0.65 / 0.28 23.37 / 0.61 / 0.33

IL-NeRF No 24.73 / 0.73 / 0.19 24.80 / 0.70 / 0.22 24.86 / 0.69 / 0.23 24.82 / 0.67 / 0.23

Kitchen

NeRF Yes 31.17 / 0.91 / 0.08 27.01 / 0.75 / 0.25 21.42 / 0.70 / 0.31 23.69 / 0.75 / 0.24
EWC Yes 31.17 / 0.91 / 0.08 26.76 / 0.74 / 0.25 22.09 / 0.70 / 0.31 23.39 / 0.74 / 0.23

CLNeRF Yes 31.05 / 0.91 / 0.07 29.72 / 0.88 / 0.13 29.33 / 0.85 / 0.15 29.18 / 0.84 / 0.14
NeRF-SLAM No 30.87 / 0.90 / 0.09 29.63 / 0.85 / 0.20 27.65 / 0.81 / 0.24 27.71 / 0.82 / 0.20

IL-NeRF No 31.27 / 0.92 / 0.07 30.66 / 0.89 / 0.10 29.84 / 0.87 / 0.12 29.34 / 0.86 / 0.13

Room

NeRF Yes 35.98 / 0.96 / 0.04 30.78 / 0.91 / 0.09 26.34 / 0.80 / 0.21 27.44 / 0.86 / 0.16
EWC Yes 35.98 / 0.96 / 0.04 31.84 / 0.90 / 0.09 27.38 / 0.79 / 0.20 28.08 / 0.86 / 0.16

CLNeRF Yes 36.18 / 0.96 / 0.03 33.93 / 0.95 / 0.05 32.03 / 0.92 / 0.08 31.99 / 0.93 / 0.06
NeRF-SLAM No 35.74 / 0.94 / 0.08 33.20 / 0.93 / 0.07 30.36 / 0.88 / 0.17 30.73 / 0.89 / 0.13

IL-NeRF No 36.04 / 0.96 / 0.04 34.02 / 0.94 / 0.04 32.35 / 0.92 / 0.07 31.45 / 0.91 / 0.09

Stump

NeRF Yes 25.62 / 0.77 / 0.28 22.30 / 0.52 / 0.38 21.25 / 0.46 / 0.42 20.55 / 0.44 / 0.47
EWC Yes 25.62 / 0.77 / 0.28 22.55 / 0.51 / 0.37 21.09 / 0.45 / 0.42 21.48 / 0.44 / 0.46

CLNeRF Yes 26.18 / 0.79 / 0.27 25.93 / 0.64 / 0.37 25.12 / 0.62 / 0.38 25.18 / 0.64 / 0.39
NeRF-SLAM No 24.98 / 0.74 / 0.31 24.76 / 0.61 / 0.36 24.05 / 0.56 / 0.40 23.93 / 0.57 / 0.43

IL-NeRF No 25.96 / 0.77 / 0.28 25.75 / 0.66 / 0.32 25.09 / 0.60 / 0.37 24.89 / 0.58 / 0.37

Combining CLNeRF with Our Camera Pose Align-
ment. Table 12 shows the results of CLNeRF with provided
camera poses (CLNeRF), CLNeRF with our camera pose
alignment (CLNeRF-CPA). Comparison with CLNeRF and
CLNeRF-CPA, our camera pose alignment is not only lim-
ited to IL-NeRF, but also can be combined with existing
methods to solve more practical incremental learning sce-
narios.

Combining Gaussian Splatting with Our Camera
Pose Alignment. Table 13 compares Gaussian Splatting

with provided camera poses (GS) with Gaussian Splatting
with our camera pose alignment (GS-CPA). GS-CPA em-
ploys the same camera pose selection and camera pose
alignment, but for pose refinement, we refer to the pose re-
finement method outlined in [13]. As we can see, our cam-
era pose alignment technique is effective not only for NeRF
but also for Gaussian Splatting in incremental learning sce-
narios.

Comparing with Existing Pose Optimization in NeRF.
We use NoPe-NeRF [5] as an example and replace our pose



Table 6. Performance comparison on the NeRF-real360 dataset with the baselines: PSNR, SSIM, and LPIPS. IL-NeRF outperforms the
original NeRF, EWC, NeRF-SLAM and achieves comparable results with CLNeRF.

Scene Method Pose PSNR ⇑ / SSIM ⇑ / LPIPS ⇓
G0 G1 G2 G3

Pinecone

NeRF Yes 26.22 / 0.84 / 0.16 22.90 / 0.64 / 0.24 21.15 / 0.58 / 0.33 18.94 / 0.49 / 0.41
EWC Yes 26.22 / 0.84 / 0.16 22.70 / 0.63 / 0.24 21.42 / 0.57 / 0.32 18.81 / 0.48 / 0.41

CLNeRF Yes 26.88 / 0.89 / 0.12 24.23 / 0.79 / 0.16 24.03 / 0.73 / 0.19 23.18 / 0.74 / 0.21
NeRF-SLAM No 25.63 / 0.81 / 0.18 24.09 / 0.73 / 0.22 23.01 / 0.68 / 0.29 21.79 / 0.65 / 0.34

IL-NeRF No 26.31 / 0.87 / 0.10 24.56 / 0.78 / 0.17 23.78 / 0.74 / 0.20 22.93 / 0.72 / 0.23

Vasedeck

NeRF Yes 29.03 / 0.85 / 0.07 23.99 / 0.70 / 0.26 22.73 / 0.69 / 0.24 21.57 / 0.64 / 0.31
EWC Yes 29.03 / 0.85 / 0.07 24.36 / 0.69 / 0.25 22.25 / 0.68 / 0.24 20.52 / 0.64 / 0.30

CLNeRF Yes 29.27 / 0.86 / 0.07 27.93 / 0.85 / 0.12 26.03 / 0.74 / 0.16 26.18 / 0.74 / 0.18
NeRF-SLAM No 27.98 / 0.79 / 0.11 26.41 / 0.77 / 0.21 25.10 / 0.72 / 0.21 24.62 / 0.71 / 0.26

IL-NeRF No 29.48 / 0.86 / 0.07 27.38 / 0.82 / 0.10 26.11 / 0.76 / 0.14 26.15 / 0.75 / 0.17

NeRF IL-NeRF GT NeRF IL-NeRF GT

G0

G1

G2

G3

Figure 10. Qualitative comparison of the original NeRF and IL-NeRF on the rendering images in the first image data after each incremental
training. GT means the ground truth of the training image. The original NeRF demonstrates severe catastrophic forgetting, leading to the
loss of early-task scene information. In contrast, IL-NeRF is able to preserve the scene of interest throughout the training process. Testsets
are the scenes ’Counter’ and ’Bonsai’ in the Mip-NeRF36 dataset.

camera alignment with NoPe-NeRF. We keep camera poses
of previous data estimated by NoPe-NeRF, and when new
incremental data arrives, we use the previous camera poses
as the initial values, so that we can ensure that the camera
poses of the new incremental data can be consistent with the
coordinate system of the previous camera poses. Table 14
shows PSNR of NoPe-NeRF and IL-NeRF. IL-NeRF out-
performs NoPe-NeRF. This is because NoPe-NeRF needs
the previous data rendered from NeRF for depth estimation.
Some poor quality replay data brings poor depth estimation
results, which affects the performance of NoPe-NeRF.

11. Limitation
For large-scale scenes with limited overlap between views
in the training dataset, the performance of IL-NeRF may be
suboptimal because the limited overlap between views can
result in significant errors or even the inability to calculate
the transfer matrices during the camera coordinate align-
ment.
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Figure 11. Qualitative comparison of the original NeRF and IL-NeRF on the rendering images in the first image data after each incremental
training. GT means the ground truth of the training image. The original NeRF demonstrates severe catastrophic forgetting, leading to the
loss of early-task scene information. In contrast, IL-NeRF is able to preserve the scene of interest throughout the training process. Testsets
are the scenes ’Garden’ and ’Bicycle’ in the Mip-NeRF36 dataset.
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Figure 12. Qualitative comparison of the original NeRF and IL-NeRF on the rendering images in the first image data after each incremental
training. GT means the ground truth of the training image. The original NeRF demonstrates severe catastrophic forgetting, leading to the
loss of early-task scene information. In contrast, IL-NeRF is able to preserve the scene of interest throughout the training process. Testsets
are the scenes ’Room’ and ’Stump’ in the Mip-NeRF36 dataset.
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Figure 13. Qualitative comparison of the original NeRF and IL-NeRF on the rendering images in the first image data after each incremental
training. GT means the ground truth of the training image. The original NeRF demonstrates severe catastrophic forgetting, leading to the
loss of early-task scene information. In contrast, IL-NeRF is able to preserve the scene of interest throughout the training process. Testset
is the scenes ’Pinecone’ and ’Vasedesk’ in the NeRF-real360 dataset.

Table 7. Comparison of camera pose selection method with random selection and myopic selection on PSNR. The higher the better.

Method Mip-NeRF360 NeRF-real360 Block-NeRFBicycle Bonsai Counter Garden Kitchen Room Stump Pinecone Vasedeck
Random 17.76 23.41 23.41 20.49 23.12 23.82 19.98 18.23 20.21 19,38
Myoptic 21.06 28.15 27.06 24.28 28.44 29.96 24.29 22.02 25.51 24.86
IL-NeRF 22.34 28.96 27.82 24.82 29.34 31.45 24.89 22.93 26.15 26.58
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Figure 14. Qualitative comparison of the original NeRF and IL-NeRF on the rendering images in the first image data after each incremental
training. GT means the ground truth of the training image. The original NeRF demonstrates severe catastrophic forgetting, leading to the
loss of early-task scene information. In contrast, IL-NeRF is able to preserve the scene of interest throughout the training process. Testset
is the scenes in the Block-NeRF dataset.



Table 8. Influence of optimal pose count D on IL-NeRF.

Scene Method PSNR ⇑
D = 1 D = 5 D = 10 D = 20 D = All

Bicycle

Random 15.35 16.27 17.76 18.41 18.69
Myoptic 19.14 20.82 21.06 20.64 19.96
IL-NeRF 19.14 21.13 22.34 21.85 20.57

Bonsai

Random 19.89 21.09 23.02 23.86 24.22
Myoptic 24.81 26.98 27.30 26.75 25.87
IL-NeRF 24.81 27.39 28.96 28.32 26.66

Counter

Random 19.11 20.26 22.11 22.92 23.27
Myoptic 23.83 25.92 26.22 25.70 24.85
IL-NeRF 23.83 26.31 27.82 27.20 25.61

Garden

Random 17.07 18.09 19.75 20.47 20.78
Myoptic 21.29 22.75 23.42 22.95 22.20
IL-NeRF 21.29 23.15 24.82 24.30 22.88

Kitchen

Random 20.15 21.36 23.32 24.17 24.54
Myoptic 25.13 27.34 27.65 27.10 26.21
IL-NeRF 25.13 27.75 29.34 28.69 27.01

Room

Random 21.60 22.90 25.00 25.91 26.31
Myoptic 26.94 29.31 29.64 29.05 28.09
IL-NeRF 26.94 29.74 31.45 30.76 28.95

Stump

Random 17.10 18.12 19.78 20.51 20.82
Myoptic 21.32 23.19 23.46 22.91 22.23
IL-NeRF 21.32 23.54 24.89 24.34 22.91

Pinecone

Random 15.75 16.69 18.22 18.89 19.18
Myoptic 19.64 21.36 21.61 21.18 20.48
IL-NeRF 19.64 21.68 22.93 22.42 21.11

Vasedeck

Random 17.96 19.04 20.78 21.54 21.87
Myoptic 22.40 24.37 24.65 24.16 23.36
IL-NeRF 22.40 24.73 26.15 25.57 24.07



Table 9. Comparison of IL- NeRF w/o TM, IL-NeRF w/o PR and IL-NeRF. IL-NeRF outperforms these two cases.

Scene Method PSNR ⇑ / SSIM ⇑ / LPIPS ⇓
G0 G1 G2 G3

Bicycle

w/o TM 22.90 / 0.62 / 0.33 13.64 / 0.32 / 0.66 11.86 / 0.29 / 0.79 11.14 / 0.26 / 0.83
w/o PR 22.76 / 0.61 / 0.33 18.67 / 0.41 / 0.52 20.74 / 0.46 / 0.50 21.06 / 0.46 / 0.52

IL-NeRF 22.90 / 0.62 / 0.33 19.84 / 0.48 / 0.44 22.05 / 0.54 / 0.40 22.34 / 0.55 / 0.40

Bonsai

w/o TM 33.54 / 0.93 / 0.07 21.13 / 0.59 / 0.18 19.48 / 0.46 / 0.31 18.40 / 0.40 / 0.37
w/o PR 33.30 / 0.93 / 0.07 28.30 / 0.84 / 0.18 27.80 / 0.81 / 0.21 27.33 / 0.80 / 0.22

IL-NeRF 33.54 / 0.93 / 0.07 30.73 / 0.89 / 0.12 29.77 / 0.86 / 0.16 28.96 / 0.85 / 0.18

Counter

w/o TM 32.13 / 0.91 / 0.07 23.91 / 0.58 / 0.18 19.02 / 0.45 / 0.29 13.87 / 0.39 / 0.35
w/o PR 32.12 / 0.91 / 0.07 27.89 / 0.83 / 0.13 27.05 / 0.81 / 0.16 26.47 / 0.79 / 0.17

IL-NeRF 32.13 / 0.91 / 0.07 29.63 / 0.87 / 0.12 28.56 / 0.85 / 0.15 27.82 / 0.83 / 0.17

Garden

w/o TM 24.73 / 0.73 / 0.19 17.05 / 0.46 / 0.33 13.37 / 0.37 / 0.45 15.76 / 0.31 / 0.47
w/o PR 24.70 / 0.71 / 0.20 23.34 / 0.67 / 0.20 23.17 / 0.69 / 0.21 22.42 / 0.67 / 0.23

IL-NeRF 24.73 / 0.73 / 0.19 24.80 / 0.70 / 0.22 24.86 / 0.69 / 0.23 24.82 / 0.67 / 0.23

Kitchen

w/o TM 31.27 / 0.92 / 0.07 21.08 / 0.59 / 0.15 16.05 / 0.46 / 0.23 14.63 / 0.40 / 0.26
w/o PR 31.17 / 0.91 / 0.08 28.54 / 0.84 / 0.12 27.86 / 0.82 / 0.15 27.48 / 0.78 / 0.18

IL-NeRF 31.27 / 0.92 / 0.07 30.66 / 0.89 / 0.10 29.84 / 0.87 / 0.12 29.34 / 0.86 / 0.13

Room

w/o TM 36.04 / 0.96 / 0.04 27.45 / 0.62 / 0.06 17.40 / 0.49 / 0.13 19.98 / 0.43 / 0.18
w/o PR 35.98 / 0.96 / 0.04 32.67 / 0.92 / 0.07 31.12 / 0.86 / 0.17 30.35 / 0.84 / 0.13

IL-NeRF 36.04 / 0.96 / 0.04 34.02 / 0.94 / 0.04 32.35 / 0.92 / 0.07 31.45 / 0.91 / 0.09

Stump

w/o TM 25.96 / 0.77 / 0.28 20.78 / 0.44 / 0.48 16.71 / 0.32 / 0.73 15.81 / 0.27 / 0.80
w/o PR 25.62 / 0.77 / 0.28 24.25 / 0.58 / 0.37 23.77 / 0.53 / 0.43 22.43 / 0.50 / 0.46

IL-NeRF 25.96 / 0.77 / 0.28 25.75 / 0.66 / 0.32 25.09 / 0.60 / 0.37 24.89 / 0.58 / 0.39

Table 10. Comparison of IL- NeRF w/o TM, IL-NeRF w/o PR and IL-NeRF. IL-NeRF outperforms these two cases.

Scene Method PSNR ⇑ / SSIM ⇑ / LPIPS ⇓
G0 G1 G2 G3

Pinecone

w/o TM 26.31 / 0.87 / 0.10 19.82 / 0.52 / 0.25 15.84 / 0.39 / 0.39 14.56 / 0.34 / 0.47
w/o PR 26.22 / 0.84 / 0.16 23.87 / 0.61 / 0.22 22.24 / 0.66 / 0.28 21.13 / 0.66 / 0.32

IL-NeRF 26.31 / 0.87 / 0.10 24.56 / 0.78 / 0.17 23.78 / 0.74 / 0.20 22.93 / 0.72 / 0.23

Vasedeck

w/o TM 29.48 / 0.86 / 0.07 22.09 / 0.54 / 0.25 16.05 / 0.40 / 0.35 13.04 / 0.35 / 0.37
w/o PR 29.03 / 0.85 / 0.07 25.30 / 0.74 / 0.18 24.80 / 0.68 / 0.21 24.33 / 0.63 / 0.23

IL-NeRF 29.48 / 0.86 / 0.07 27.38 / 0.82 / 0.10 26.11 / 0.76 / 0.14 26.15 / 0.75 / 0.17

Table 11. Quantitative comparison of camera pose estimation accuracy (Metric: Mean Square Error). The lower the better.

Method Mip-NeRF360 NeRF-real360 Block-NeRFBicycle Bonsai Counter Garden Kitchen Room Stump Pinecone Vasedeck
NeRF-SLAM 0.857 0.469 0.556 0.749 0.282 0.267 0.774 1.146 0.537 1.674
NoPe-NeRF 1.853 0.967 1.191 1.664 0.631 0.524 1.649 2.248 1.087 2.983

IL-NeRF 0.752 0.387 0.499 0.668 0.257 0.212 0.693 0.971 0.468 0.972



(a) Bicycle (b) Counter (c) Garden (d) Bonsai

(e) Kitchen (f) Room (g) Stump (h) Pinecone

(i) Vasedeck (j) Block-NeRF

Figure 15. Camera pose estimation comparison. GT means the camera poses estimated by COLMAP from all the training images. IL-
NeRF recovers accurate camera poses due to the help of incremental camera pose alignment.

Table 12. Comparison of CLNeRF, CLNeRF-CPA on PSNR. The higher the better.

Method Mip-NeRF360 NeRF-real360 Block-NeRFBicycle Bonsai Counter Garden Kitchen Room Stump Pinecone Vasedeck
CLNeRF 22.18 28.18 28.28 24.48 29.18 31.99 25.18 23.18 26.18 25.93

CLNeRF-CPA 21.97 29.17 27.96 25.18 28.87 30.84 23.96 23.15 25.23 25.79

Table 13. Comparison of GS, GS-CPA on PSNR. The higher the better.

Method Mip-NeRF360 NeRF-real360 Block-NeRFBicycle Bonsai Counter Garden Kitchen Room Stump Pinecone Vasedeck
GS 23.78 29.86 29.15 26.11 31.64 32.43 25.18 24.88 27.73 26.91

GS-CPA 23.91 29.83 29.72 25.97 30.96 32.27 25.37 24.27 28.02 26.89

Table 14. Comparison of NoPe-NeRF and IL-NeRF on PSNR. The higher the better.

Method Mip-NeRF360 NeRF-real360 Block-NeRFBicycle Bonsai Counter Garden Kitchen Room Stump Pinecone Vasedeck
NoPe-NeRF 18.35 20.76 21.38 17.54 19.81 22.74 18.91 17.65 19.36 18.97

ILNeRF 22.34 28.96 27.82 24.82 29.34 31.45 24.89 22.93 26.15 26.58
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