
Segment AnyNeuron

Taha Razzaq Ahmed Qazi Asim Iqbal*

Tibbling Technologies

asim@tibbtech.com

Abstract

Image segmentation is critical in neuroimaging for analyz-

ing brain structures and identifying biomarkers associated

with disorders. Deep learning models have shown exponen-

tial success in computer vision tasks over the years, includ-

ing image segmentation. However, to achieve optimal per-

formance, these models require extensive annotated data for

training, which is often the bottleneck in expediting brain-

wide image analysis. For segmenting cellular structures

such as neurons, the annotation process is cumbersome

and time-consuming due to the inherent structural, inten-

sity, and background variations present in the data caused

by genetic markers, imaging techniques, etc. We propose

an Active Learning-based neuron segmentation framework

(Segment AnyNeuron), which incorporates state-of-the-art

image segmentation modules - Detectron2 and HQ SAM,

and requires minimal ground truth annotation to achieve

high precision for brain-wide segmentation of neurons. Our

framework can classify and segment completely unseen neu-

ronal data by selecting the most representative samples for

manual annotation, thus avoiding the cold-start problem

common in Active Learning. We demonstrate the effective-

ness of our framework for automated brain-wide segmenta-

tion of neurons on a variety of open-source neuron imaging

datasets, acquired from different scanners and a variety of

transgenic mouse lines.

1. Introduction

Recent advancements in Deep Learning (DL) have rev-

olutionized computer vision, demonstrating tremendous

success in tasks such as object detection [32] and image

segmentation [15]. However, despite these successes, a

significant challenge persists: DL models require large

quantities of annotated data for training, which often proves

to be a bottleneck [20]. When sufficient labeled data is

available, DL models for image segmentation and object

detection exhibit remarkable performance on downstream
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tasks and are actively utilized in medical image analysis

[25]. While DL offers substantial benefits for numerous

medical applications, including disease diagnosis, treat-

ment planning, and biological research, the requirement

for extensive data remains a limiting factor due to the high

cost and time involved in annotation [25]. This challenge

is particularly pronounced in neuron segmentation, where

the small and intricate structures make manual annotation

exceptionally laborious and time-consuming.

To address this issue, Active Learning (AL) is a widely

adopted approach designed to minimize the time and

resources required for manual annotation [21]. AL strate-

gically selects the most representative and informative

samples from a pool of unlabelled data. These samples,

once manually annotated, are used to train or fine-tune the

model, yielding significantly better results in less time.

Given that AL is a well-studied solution in the context of

image segmentation [18] and object detection [13, 14], it

is increasingly being leveraged to enhance deep learning

models in medical imaging [22]. Although AL-based

medical image segmentation models have seen signifi-

cant advancements over the past few years [3, 22], the

application of AL to neuron segmentation remains rare [13].

We propose a novel Active Learning-based framework for

neuron segmentation that leverages state-of-the-art (SOTA)

image detection and segmentation models, specifically

Detectron2 [32] and HQ-SAM [15]. While Detectron2

is one of the most commonly used detection models for

medical images [1, 7, 28], HQ-SAM is also being integrated

into medical applications [33]. We chose Detectron2 for

its proven performance in instance detection on medical

images, including the ability to produce high-quality region

proposals even for small objects (thanks to its multi-scale

Feature Pyramid Network (FPN) architecture [17]). Mean-

while, HQ-SAM was selected because it addresses the

challenge of accurately segmenting fine structures by in-

corporating high-resolution feature refinement layers, thus

preserving small-scale object details—crucial for neurons.

This ensures that our framework is designed to operate with
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Figure 1. Block diagram for Segment AnyNeuron. A,B) An intensity-normalized version of the input unlabelled image is generated and

fed into the Neuron Detector to generate keypoints (dirty ground truth). C) Representative samples from the entire unlabelled dataset are

selected and fed into the Active Learning pipeline. D,E) After manual annotation fixing, the refined keypoints are F) processed by the

neuron segmenter to generate masks, which are further G) refined through thresholding. H) The data is then used to train/finetune the

Neuron Detector.

minimal ground truth annotation, significantly reducing the

annotation burden while maintaining high performance on

unseen neuronal data. The key innovation of our approach

lies in the integration of instance detection and Active

Learning to iteratively refine the centers of the outputted

bounding boxes (key points) and enhance segmentation

accuracy. By using Detectron2 to generate initial key points

on unseen, unlabelled data, we provide a strong baseline

that can be corrected with minimal manual intervention.

These corrected key points are then used by HQ-SAM to

generate precise segmentation masks. Additionally, our

framework includes an intensity-based thresholding feature

that allows users to control the segmentation output by

adjusting the intensity of detected neurons, providing flex-

ibility and customization based on specific requirements.

Our methodology also incorporates advanced preprocess-

ing steps such as intensity normalization and patch-based

image segmentation, ensuring that our model receives the

cleanest and most relevant data inputs. We demonstrate

the effectiveness of our approach through analyses of a

disease dataset, showcasing its adaptability and superior

performance compared to existing methods. We aim to

open-source our framework and provide a comprehensive

guide on applying our Active Learning framework to novel

datasets.

2. Methods

2.1. Intensity normalization

Medical images, especially fluorescent images, often

exhibit varying intensities, posing challenges for DL object

detection and image segmentation models. Therefore,

our pipeline incorporates essential preprocessing steps,

including intensity normalization, to address this issue

effectively. The input image is divided into smaller patches

that undergo intensity normalization. This process enables

efficient handling of high-resolution images, while inten-

sity normalization adjusts the pixel values to significantly

reduce overall intensity variability.

The image I is split into patches (of size x1 x x2)

and for each patch, an intensity threshold θ is calculated
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Figure 2. Qualitative results on the unseen Allen Brain dataset. The bottom rows (2nd and 4th) show the original sample, our model’s

segmentation mask before Active Learning overlaid, our model’s segmentation masks after Active Learning overlaid, and UNets segmen-

tation masks, from left to right. A zoomed-in subsection, following the same order, is shown in the top rows (1st and 3rd).

which is used for the normalization process.

θ = min(max(Ipatch)− sorted(Ipatch)[−k], T ) (1)

We set k = 5 to ignore the top 5 pixel intensities within each

patch, which typically correspond to extreme outliers in our

fluorescent images, and T = 10 to prevent excessively

bright pixels from dominating the normalization. In prac-

tice, these constants were determined by testing a range of

values (e.g., k = 1 to k = 10) on a subset of images and se-

lecting those that minimized over-contrast or under-contrast

artifacts. Furthermore, for the purposes of our experiments,

we set x1 = x2 = 256. Using θ and its mean intensity

(μ), the patch is normalized, followed by gamma correction.

The final image patch intensities are then rescaled between

the 0.1 and 0.99 percentiles.

I ′patch =
(Ipatch − μ)

max(Ipatch)− θ
× 255 (2)

I ′′patch = (I ′patch)
γ (3)

Intensity normalization enhances the contrast of the image

leading to a more accurate and robust segmentation. All the

intensity-normalized patches are stitched together to recon-

struct the original image, which is then fed as input to the

neuron detector.

2.2. Neuron Detector

The object detection model we employ as part of our neu-

ron detector is Detectron2, chosen for its widespread use

and efficacy in medical image analysis [28], [1]. Building

upon Mask-RCNN [12], Detectron2 uses a Feature Pyramid
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Figure 3. Qualitative results on the unseen Fluocells dataset. The original sample for the 3 stains in the dataset is shown on the left,

followed by the masks generated by our framework before intensity thresholding, the masks after applying intensity thresholding, masks

generated by UNet, and the actual ground truths. The DICE score between the model’s masks and ground truth is mentioned in the bottom

left corner of the masks.

Network (FPN) [17] with ResNet [11] blocks to downsam-

ple images and extract hierarchical features. Detectron2’s

FPN-based architecture [17] has been shown to be effective

at multi-scale object detection, generating bounding boxes

that often align well with neuron centers even under chal-

lenging intensity conditions. This baseline reduces the an-

notation effort required for small structures by minimizing

gross localization errors, hence allowing experts to focus

only on fine corrections. Furthermore, the Region Proposal

Network (RPN) [23] processes these features to generate

top-scoring bounding boxes, which are refined through the

BoxHead for the final output. In our framework, Detectron2

detects neurons in normalized images by using the centers

of bounding boxes as keypoints, crucial for accurate neuron

identification. While Detectron2 can produce segmentation

masks, it is less effective for small neurons, often merg-

ing multiple neurons into a single mask. Thus, we rely on

the object detection head for precise neuron identification

and segmentation. Moreover, during finetuning the neuron

detector, we use individual neuron masks within each im-

age to further minimize the possibility of multiple neurons

being assigned a single mask. Detectron2 also plays a piv-

otal role in generating an initial, albeit imperfect, ground

truth for our Active Learning pathway. Using keypoints

over segmentation masks significantly speeds up the ground

truth correction process, as annotating key points is more

straightforward and expedient, enhancing annotation effi-

ciency.

2.3. Active Learning

To optimize our model for any neuron data, we employ

Active Learning, which allows fine-tuning with minimal

ground truth and fewer training iterations. This human-in-

the-loop approach involves experts correcting the initial,

“dirty” ground truth generated by our neuron detector for

the most representative samples. To ensure comprehensive

coverage of the feature space during sample selection for

manual annotation, we first embed all unlabeled images

using UMAP [19] and then partition the projection space

into equally sized clusters (e.g., 5–10 clusters based on

cluster density). From each cluster, we randomly select

5% of its points, ensuring both dense and sparse regions

are sampled. We then select representative samples from

both sparse and dense clusters for use in the active learning

pipeline.

Starting with the neuron detector’s output provides an

initial baseline, reducing manual labeling effort and cir-

cumventing the cold-start problem commonly associated

with Active Learning [6]. This iterative process of refining

the ground truth and continuously updating the model

enhances its generalization capabilities and enables rapid
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convergence to a highly accurate state.

2.4. Neuron Segmenter

The refined keypoints from the Active Learning step are

fed into the Neuron segmenter. We use HQ SAM [15], a

state-of-the-art segmentation model as part of our pipeline

as it excels at processing keypoints to generate high-quality

segmentation masks, even in complex and noisy images,

achieving precise neuron segmentation. Compared to the

standard Segment Anything Model (SAM) [16], HQ-SAM

incorporates additional feature refinement modules and

multi-resolution attention, which better preserve small ob-

ject details—critical in neuron segmentation where struc-

tures can be just a few pixels wide. We fine-tuned HQ-

SAM on a small subset of neuron data to adapt its learned

priors to domain-specific intensity distributions, improving

its mask quality for neuronal boundaries. The process be-

gins with the refined keypoints, which are corrected through

minimal ground truth annotation during the Active Learn-

ing phase. These keypoints serve as crucial landmarks,

guiding HQ SAM to focus on specific regions of interest

within the image patches. The accurate reference points

provided by these keypoints significantly enhance the pre-

cision of the segmentation. This approach helps mitigate

issues of overlapping and closely packed neurons. The pre-

cise masks generated by HQ SAM are more reliable and

accurate. Once the masks are generated, intensity-based

thresholding is applied to filter out low-intensity neurons,

enhancing the overall segmentation accuracy.

2.5. Intensity-based thresholding

We apply intensity-based thresholding to the masks gen-

erated by HQ-SAM since it allows us to filter out low-

intensity neurons, which are often false positives. By ad-

justing the intensity threshold, users can control the inclu-

sion of neurons in the final segmentation mask, optimiz-

ing the results based on their specific requirements. The

user-controlled intensity knob provides flexibility and cus-

tomization, ensuring that the segmentation meets the de-

sired accuracy and specificity. Post-segmentation, the in-

tensity of each neuron is measured using the original image

to ensure accurate intensity values. These values are then

normalized for consistency. Users can adjust the intensity

threshold, which allows them to filter out neurons that do

not meet the desired intensity criteria. This step facilitates

in removing false positives and improving the overall ac-

curacy of the segmentation by giving users the freedom to

exclude neurons based on their specific intensity require-

ments. This flexibility is essential for tailoring the segmen-

tation to different applications and datasets, enhancing the

framework’s effectiveness.

2.6. Performance evaluation

To quantify our model’s performance, we compare our

results with U-Net [27], a well-established model in

medical image segmentation. U-Net serves as a benchmark

in the domain, particularly for medical datasets, and is

widely used by recent models to demonstrate segmentation

efficacy [30], [5]. Its architecture, featuring a contracting

path for context capture and an expansive path for precise

localization, makes it exceptionally effective for tasks

such as neuron segmentation. U-Net’s ability to work well

with limited annotated data and produce high-resolution

segmentation maps has led to its widespread adoption and

significant success in various medical imaging applica-

tions. This makes it an ideal model for benchmarking and

comparing new segmentation algorithms [2].

Prior to experimentation, we finetuned UNet on the

pre-defined training set of Fluocells for approximately

100 epochs and used that checkpoint for performance

comparisons. We demonstrate that our model performs

marginally better than UNet on both the Fluocells and

SOM-Cre Mouse Line datasets.

3. Results & Discussion

We propose Segment AnyNeuron, a multi-step framework

designed to optimize segmentation performance on novel

neuron data. The framework consists of a neuron detec-

tor and segmenter, which, in conjunction with the Active

Learning module, deliver benchmarking performance on

unlabeled neuron datasets with minimal manual annotation.

The overall pipeline of our framework, Segment AnyNeu-

ron, is shown in Figure 1.

3.1. Image datasets

SOM-Cre mouse line dataset: To evaluate the per-

formance of our Active Learning pipeline, we employ

open-source data from the Allen Brain Data Repository,

focusing on transgenic somatostatin-Cre (SOM-Cre) mouse

strains (Sst-IRES-Cre;Ai14). The SOM-Cre strain is

extensively studied to elucidate the physiological role of

somatostatin-expressing neurons in the mouse brain [29]

and its association with Alzheimer’s disease [24, 31],

thus providing a pertinent dataset for our experimental

validation. The dataset comprises detailed neuronal mouse

brain sections, from which we strategically select a few for

our Active Learning pipeline.

Fluocells v2 dataset: Since our (pre-trained) model

was primarily fine-tuned on an in-house neuron dataset, we

sought to demonstrate its effectiveness on similar datasets

by selecting the Fluorescent Neuronal Cells v2 dataset

[8]. Fluocells comprise three fluorescence microscopy
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cFOS Orexin CTb LIVECell

Model Precision Recall DICE

Score

Precision Recall DICE

Score

Precision Recall DICE

Score

Precision Recall DICE

Score

mAP

Ours (After AL) 0.81 0.78 0.71 0.32 0.39 0.29 0.85 0.66 0.63 0.88 0.76 0.77 0.560

Baseline (Before AL) 0.43 0.77 0.54 0.12 0.22 0.14 0.43 0.57 0.47 0.55 0.33 0.24 0.290

Cell ResUNET [8] 0.79 0.62 0.69 0.33 0.25 0.28 0.67 0.63 0.65 – – – –

UNET [27] 0.51 0.43 0.41 0.18 0.13 0.15 0.41 0.54 0.37 0.82 0.27 0.36 0.1420

Cascade Mask RCNN [4] – – – – – – – – – – – – 0.4790

Table 1. Performance comparison of our AL framework with different models, on the Fluocells dataset (cFOS, Orexin, and CTb stains)

and the LIVECell dataset.

image collections, where rodent neuronal cell nuclei

and cytoplasm are stained with cFOS, the b-subunit of

Cholera Toxin (CTb), and orexin markers, highlighting

their anatomical and functional characteristics. Ground

truth annotations for these images are publicly available.

LIVECell dataset: For performance validation, we

compared our pre-trained model and UNET on the LIVE-

Cell dataset [10], a comprehensive, high-quality dataset of

phase-contrast images that have been manually annotated

and validated by experts. It includes over 1.6 million

cells, encompassing a wide range of cell morphologies

and culture densities. Prior to model input, all images

underwent standard pre-processing procedures, including

intensity normalization and patching.

3.2. Active Learning performance on SOM-Cre
mouse line dataset

To evaluate the effectiveness of our Active Learning

pipeline on novel data, we employ unseen SOM-Cre mouse

line samples from the Allen Brain Data repository, which

differ in neuron size and structure from our training set. As

a result, the current model checkpoint shows suboptimal

performance on this new dataset. To address this domain

shift, we generate preliminary (dirty) ground truth using

our neuron detector on a strategically chosen subset of

samples, then refine these annotations manually via the

Active Learning loop. These corrected samples, along

with their key points, are used by the segmentation model

to generate the corresponding masks. The generated

masks are further refined using an intensity thresholding

parameter, which enables the elimination of extraneous

neurons, thereby producing a more accurate and cleaner

ground truth mask. After pre-processing, the images and

their masks are converted into patches and fed into our

model for fine-tuning. We conduct minimal fine-tuning

(approximately 10 epochs) and present the qualitative

results of our model before and after Active Learning

as seen in Figure 2. It presents distinct sections of the

mouse brain, accompanied by the masks generated by

our pipeline before and after the application of Active

Learning. In addition to the full section masks, the top rows

(1st and 3rd rows) display zoomed-in subsections with

their corresponding masks overlaid.

Before Active Learning, our model struggled to accu-

rately capture neurons, often producing blob-like masks

with a significant number of false positives. However, in

post-active learning, our model demonstrates an enhanced

capability to precisely identify and generate individual

masks for specific neurons. By employing a detection

model followed by image segmentation, we effectively

address the issue of multiple neurons being amalgamated

under a single mask. As illustrated in the zoomed-in

subsections in Figure 2, our model successfully generates

distinct masks for neurons even in close proximity. Ad-

ditionally, the intensity-based thresholding significantly

reduces false positives, resulting in cleaner and more

accurate segmentation.

We compare our model’s performance with UNET

[26] using the same data samples. As shown in Figure

2, UNET exhibits a higher occurrence of false positives

and often misses smaller-sized neurons. The zoomed-in

sections reveal that the segmentation masks generated by

UNET contain significant broken masks as well.

3.3. Evaluation on Fluocells v2 and LIVECell
dataset

To establish the baseline performance of our AL pipeline,

first we use the Fluocells v2 dataset and compare the

results with those obtained using UNET. We utilize the

existing test set for qualitative and quantitative evaluation.

The pre-processed, normalized images are passed through

the neuron detector and segmenter, and the DICE score

[9] is computed between the model’s output and the

corresponding ground truth. Figure 3 and Table 1 illustrate

the quantitative and qualitative results of our model and

UNET on samples corresponding to the three stains present

in the dataset. Initially, we observe that our model’s results

include the actual neurons (true positives) but also a sig-

nificant number of false positives, resulting in a low DICE

score. To address the issue of excessive false positives, we

apply intensity thresholding to the generated masks. As
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demonstrated in Figure 3, this process effectively removed

the false positives, leading to a significant increase in the

DICE score and producing a cleaner output mask. This

improvement was consistently observed across all three

stains — cFOS, CTb, and orexin.

While UNET achieves decent overall performance

and a comparable DICE score, our model demonstrates

superior performance, particularly in handling samples

with varying intensity levels. UNET struggles to capture

low-intensity neurons, resulting in missed detections and a

lower DICE score in such cases. In contrast, our model is

better equipped to handle these variations, leading to more

accurate segmentation and higher overall performance. A

similar trend is observed for the LIVECell dataset (Table

1), where our model achieves superior performance across

all metrics. Notably, it outperforms Cascade Mask R-CNN

[4], the current state-of-the-art for cell segmentation, along

with the other models.

Using the Fluocells, LIVECell and SOM-Cre Mouse

line datasets, we demonstrate the performance of our

framework. While the improvements in DICE score

are sometimes modest, these small gains can be crucial

for large-scale brain-wide analyses where even a slight

reduction in false positives or missed neurons can substan-

tially influence downstream cell counting or morphology

assessments. Moreover, the active learning component

accelerates annotation, offsetting the complexity of the

pipeline. Furthermore, it is important to note that once the

intensity parameter is adjusted, the segmentation results

closely match the ground truth, leading to near-perfect

ground truth masks.

4. Conclusion

We present Segment AnyNeuron, an active learning-based

framework for neuron segmentation using Detectron2 and

HQ-SAM. This approach reduces manual annotation needs

by iteratively refining the model with minimal ground

truth correction while maintaining high performance.

Advanced preprocessing, including intensity normalization

and patch-based segmentation, ensures clean inputs, and

intensity-based thresholding further enhances accuracy.

We validate our framework on the Fluocells, LIVECell,

and SOM-Cre mouse line datasets, showing high accuracy

and robustness. Active Learning on the SOM-Cre dataset

further improves performance, mitigating the cold-start

problem and optimizing manual annotation of key samples.

While our approach adds overhead from the two-stage

detection and segmentation pipeline, the Active Learning

loop ultimately reduces total manual annotation effort

compared to a fully supervised approach, making the

added compute cost worthwhile for large datasets. Looking

ahead, automating intensity-threshold selection and further

refining HQ-SAM for smaller neuronal structures are

promising directions to explore. Despite these limitations,

Segment AnyNeuron offers a robust and adaptable solution

for neuron segmentation, combining state-of-the-art models

with Active Learning efficiency. This method enhances

segmentation accuracy and provides a scalable approach

for complex medical imaging datasets, paving the way for

future innovations in medical image analysis.
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