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Abstract

Image segmentation is critical in neuroimaging for analyz-
ing brain structures and identifying biomarkers associated
with disorders. Deep learning models have shown exponen-
tial success in computer vision tasks over the years, includ-
ing image segmentation. However, to achieve optimal per-
formance, these models require extensive annotated data for
training, which is often the bottleneck in expediting brain-
wide image analysis. For segmenting cellular structures
such as neurons, the annotation process is cumbersome
and time-consuming due to the inherent structural, inten-
sity, and background variations present in the data caused
by genetic markers, imaging techniques, etc. We propose
an Active Learning-based neuron segmentation framework
(Segment AnyNeuron), which incorporates state-of-the-art
image segmentation modules - Detectron2 and HQ SAM,
and requires minimal ground truth annotation to achieve
high precision for brain-wide segmentation of neurons. Our
framework can classify and segment completely unseen neu-
ronal data by selecting the most representative samples for
manual annotation, thus avoiding the cold-start problem
common in Active Learning. We demonstrate the effective-
ness of our framework for automated brain-wide segmenta-
tion of neurons on a variety of open-source neuron imaging
datasets, acquired from different scanners and a variety of
transgenic mouse lines.

1. Introduction

Recent advancements in Deep Learning (DL) have rev-
olutionized computer vision, demonstrating tremendous
success in tasks such as object detection [32] and image
segmentation [15]. However, despite these successes, a
significant challenge persists: DL models require large
quantities of annotated data for training, which often proves
to be a bottleneck [20]. When sufficient labeled data is
available, DL models for image segmentation and object
detection exhibit remarkable performance on downstream

*Corresponding author.

4295

tasks and are actively utilized in medical image analysis
[25]. While DL offers substantial benefits for numerous
medical applications, including disease diagnosis, treat-
ment planning, and biological research, the requirement
for extensive data remains a limiting factor due to the high
cost and time involved in annotation [25]. This challenge
is particularly pronounced in neuron segmentation, where
the small and intricate structures make manual annotation
exceptionally laborious and time-consuming.

To address this issue, Active Learning (AL) is a widely
adopted approach designed to minimize the time and
resources required for manual annotation [21]. AL strate-
gically selects the most representative and informative
samples from a pool of unlabelled data. These samples,
once manually annotated, are used to train or fine-tune the
model, yielding significantly better results in less time.
Given that AL is a well-studied solution in the context of
image segmentation [18] and object detection [13, 14], it
is increasingly being leveraged to enhance deep learning
models in medical imaging [22]. Although AL-based
medical image segmentation models have seen signifi-
cant advancements over the past few years [3, 22], the
application of AL to neuron segmentation remains rare [13].

We propose a novel Active Learning-based framework for
neuron segmentation that leverages state-of-the-art (SOTA)
image detection and segmentation models, specifically
Detectron2 [32] and HQ-SAM [15]. While Detectron2
is one of the most commonly used detection models for
medical images [1, 7, 28], HQ-SAM is also being integrated
into medical applications [33]. We chose Detectron2 for
its proven performance in instance detection on medical
images, including the ability to produce high-quality region
proposals even for small objects (thanks to its multi-scale
Feature Pyramid Network (FPN) architecture [17]). Mean-
while, HQ-SAM was selected because it addresses the
challenge of accurately segmenting fine structures by in-
corporating high-resolution feature refinement layers, thus
preserving small-scale object details—crucial for neurons.
This ensures that our framework is designed to operate with
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Figure 1. Block diagram for Segment AnyNeuron. A,B) An intensity-normalized version of the input unlabelled image is generated and
fed into the Neuron Detector to generate keypoints (dirty ground truth). C) Representative samples from the entire unlabelled dataset are
selected and fed into the Active Learning pipeline. D,E) After manual annotation fixing, the refined keypoints are F) processed by the
neuron segmenter to generate masks, which are further G) refined through thresholding. H) The data is then used to train/finetune the

Neuron Detector.

minimal ground truth annotation, significantly reducing the
annotation burden while maintaining high performance on
unseen neuronal data. The key innovation of our approach
lies in the integration of instance detection and Active
Learning to iteratively refine the centers of the outputted
bounding boxes (key points) and enhance segmentation
accuracy. By using Detectron2 to generate initial key points
on unseen, unlabelled data, we provide a strong baseline
that can be corrected with minimal manual intervention.
These corrected key points are then used by HQ-SAM to
generate precise segmentation masks. Additionally, our
framework includes an intensity-based thresholding feature
that allows users to control the segmentation output by
adjusting the intensity of detected neurons, providing flex-
ibility and customization based on specific requirements.
Our methodology also incorporates advanced preprocess-
ing steps such as intensity normalization and patch-based
image segmentation, ensuring that our model receives the
cleanest and most relevant data inputs. We demonstrate
the effectiveness of our approach through analyses of a
disease dataset, showcasing its adaptability and superior
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performance compared to existing methods. We aim to
open-source our framework and provide a comprehensive
guide on applying our Active Learning framework to novel
datasets.

2. Methods

2.1. Intensity normalization

Medical images, especially fluorescent images, often
exhibit varying intensities, posing challenges for DL object
detection and image segmentation models. Therefore,
our pipeline incorporates essential preprocessing steps,
including intensity normalization, to address this issue
effectively. The input image is divided into smaller patches
that undergo intensity normalization. This process enables
efficient handling of high-resolution images, while inten-
sity normalization adjusts the pixel values to significantly
reduce overall intensity variability.

The image I is split into patches (of size x; X z2)
and for each patch, an intensity threshold 6 is calculated
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Figure 2. Qualitative results on the unseen Allen Brain dataset. The bottom rows (2nd and 4th) show the original sample, our model’s
segmentation mask before Active Learning overlaid, our model’s segmentation masks after Active Learning overlaid, and UNets segmen-
tation masks, from left to right. A zoomed-in subsection, following the same order, is shown in the top rows (1st and 3rd).

which is used for the normalization process.

0 = min(max(Ipacn) — sorted(Ipaen)[—k], T) (1)

We set k = 5 to ignore the top 5 pixel intensities within each
patch, which typically correspond to extreme outliers in our
fluorescent images, and 7' = 10 to prevent excessively
bright pixels from dominating the normalization. In prac-
tice, these constants were determined by testing a range of
values (e.g., k = 1 to k = 10) on a subset of images and se-
lecting those that minimized over-contrast or under-contrast
artifacts. Furthermore, for the purposes of our experiments,
we set x1 = w9 = 256. Using 6 and its mean intensity
(), the patch is normalized, followed by gamma correction.
The final image patch intensities are then rescaled between
the 0.1 and 0.99 percentiles.

4297

/ (Ipatch - ,“/)
atch = ————————— X 255 2)
patch max (Ipach) — 0

;/)/alch = ( éalch)w (3)

Intensity normalization enhances the contrast of the image
leading to a more accurate and robust segmentation. All the
intensity-normalized patches are stitched together to recon-
struct the original image, which is then fed as input to the
neuron detector.

2.2. Neuron Detector

The object detection model we employ as part of our neu-
ron detector is Detectron2, chosen for its widespread use
and efficacy in medical image analysis [28], [1]. Building
upon Mask-RCNN [12], Detectron2 uses a Feature Pyramid
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Figure 3. Qualitative results on the unseen Fluocells dataset. The original sample for the 3 stains in the dataset is shown on the left,
followed by the masks generated by our framework before intensity thresholding, the masks after applying intensity thresholding, masks
generated by UNet, and the actual ground truths. The DICE score between the model’s masks and ground truth is mentioned in the bottom

left corner of the masks.

Network (FPN) [17] with ResNet [11] blocks to downsam-
ple images and extract hierarchical features. Detectron2’s
FPN-based architecture [17] has been shown to be effective
at multi-scale object detection, generating bounding boxes
that often align well with neuron centers even under chal-
lenging intensity conditions. This baseline reduces the an-
notation effort required for small structures by minimizing
gross localization errors, hence allowing experts to focus
only on fine corrections. Furthermore, the Region Proposal
Network (RPN) [23] processes these features to generate
top-scoring bounding boxes, which are refined through the
BoxHead for the final output. In our framework, Detectron2
detects neurons in normalized images by using the centers
of bounding boxes as keypoints, crucial for accurate neuron
identification. While Detectron2 can produce segmentation
masks, it is less effective for small neurons, often merg-
ing multiple neurons into a single mask. Thus, we rely on
the object detection head for precise neuron identification
and segmentation. Moreover, during finetuning the neuron
detector, we use individual neuron masks within each im-
age to further minimize the possibility of multiple neurons
being assigned a single mask. Detectron2 also plays a piv-
otal role in generating an initial, albeit imperfect, ground
truth for our Active Learning pathway. Using keypoints
over segmentation masks significantly speeds up the ground
truth correction process, as annotating key points is more
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straightforward and expedient, enhancing annotation effi-
ciency.

2.3. Active Learning

To optimize our model for any neuron data, we employ
Active Learning, which allows fine-tuning with minimal
ground truth and fewer training iterations. This human-in-
the-loop approach involves experts correcting the initial,
“dirty” ground truth generated by our neuron detector for
the most representative samples. To ensure comprehensive
coverage of the feature space during sample selection for
manual annotation, we first embed all unlabeled images
using UMAP [19] and then partition the projection space
into equally sized clusters (e.g., 5-10 clusters based on
cluster density). From each cluster, we randomly select
5% of its points, ensuring both dense and sparse regions
are sampled. We then select representative samples from
both sparse and dense clusters for use in the active learning
pipeline.

Starting with the neuron detector’s output provides an
initial baseline, reducing manual labeling effort and cir-
cumventing the cold-start problem commonly associated
with Active Learning [6]. This iterative process of refining
the ground truth and continuously updating the model
enhances its generalization capabilities and enables rapid



convergence to a highly accurate state.

2.4. Neuron Segmenter

The refined keypoints from the Active Learning step are
fed into the Neuron segmenter. We use HQ SAM [15], a
state-of-the-art segmentation model as part of our pipeline
as it excels at processing keypoints to generate high-quality
segmentation masks, even in complex and noisy images,
achieving precise neuron segmentation. Compared to the
standard Segment Anything Model (SAM) [16], HQ-SAM
incorporates additional feature refinement modules and
multi-resolution attention, which better preserve small ob-
ject details—critical in neuron segmentation where struc-
tures can be just a few pixels wide. We fine-tuned HQ-
SAM on a small subset of neuron data to adapt its learned
priors to domain-specific intensity distributions, improving
its mask quality for neuronal boundaries. The process be-
gins with the refined keypoints, which are corrected through
minimal ground truth annotation during the Active Learn-
ing phase. These keypoints serve as crucial landmarks,
guiding HQ SAM to focus on specific regions of interest
within the image patches. The accurate reference points
provided by these keypoints significantly enhance the pre-
cision of the segmentation. This approach helps mitigate
issues of overlapping and closely packed neurons. The pre-
cise masks generated by HQ SAM are more reliable and
accurate. Once the masks are generated, intensity-based
thresholding is applied to filter out low-intensity neurons,
enhancing the overall segmentation accuracy.

2.5. Intensity-based thresholding

We apply intensity-based thresholding to the masks gen-
erated by HQ-SAM since it allows us to filter out low-
intensity neurons, which are often false positives. By ad-
justing the intensity threshold, users can control the inclu-
sion of neurons in the final segmentation mask, optimiz-
ing the results based on their specific requirements. The
user-controlled intensity knob provides flexibility and cus-
tomization, ensuring that the segmentation meets the de-
sired accuracy and specificity. Post-segmentation, the in-
tensity of each neuron is measured using the original image
to ensure accurate intensity values. These values are then
normalized for consistency. Users can adjust the intensity
threshold, which allows them to filter out neurons that do
not meet the desired intensity criteria. This step facilitates
in removing false positives and improving the overall ac-
curacy of the segmentation by giving users the freedom to
exclude neurons based on their specific intensity require-
ments. This flexibility is essential for tailoring the segmen-
tation to different applications and datasets, enhancing the
framework’s effectiveness.
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2.6. Performance evaluation

To quantify our model’s performance, we compare our
results with U-Net [27], a well-established model in
medical image segmentation. U-Net serves as a benchmark
in the domain, particularly for medical datasets, and is
widely used by recent models to demonstrate segmentation
efficacy [30], [5]. Its architecture, featuring a contracting
path for context capture and an expansive path for precise
localization, makes it exceptionally effective for tasks
such as neuron segmentation. U-Net’s ability to work well
with limited annotated data and produce high-resolution
segmentation maps has led to its widespread adoption and
significant success in various medical imaging applica-
tions. This makes it an ideal model for benchmarking and
comparing new segmentation algorithms [2].

Prior to experimentation, we finetuned UNet on the
pre-defined training set of Fluocells for approximately
100 epochs and used that checkpoint for performance
comparisons. We demonstrate that our model performs
marginally better than UNet on both the Fluocells and
SOM-Cre Mouse Line datasets.

3. Results & Discussion

We propose Segment AnyNeuron, a multi-step framework
designed to optimize segmentation performance on novel
neuron data. The framework consists of a neuron detec-
tor and segmenter, which, in conjunction with the Active
Learning module, deliver benchmarking performance on
unlabeled neuron datasets with minimal manual annotation.
The overall pipeline of our framework, Segment AnyNeu-
ron, is shown in Figure 1.

3.1. Image datasets

SOM-Cre mouse line dataset: To evaluate the per-
formance of our Active Learning pipeline, we employ
open-source data from the Allen Brain Data Repository,
focusing on transgenic somatostatin-Cre (SOM-Cre) mouse
strains (Sst-IRES-Cre;Ail4). The SOM-Cre strain is
extensively studied to elucidate the physiological role of
somatostatin-expressing neurons in the mouse brain [29]
and its association with Alzheimer’s disease [24, 31],
thus providing a pertinent dataset for our experimental
validation. The dataset comprises detailed neuronal mouse
brain sections, from which we strategically select a few for
our Active Learning pipeline.

Fluocells v2 dataset: Since our (pre-trained) model
was primarily fine-tuned on an in-house neuron dataset, we
sought to demonstrate its effectiveness on similar datasets
by selecting the Fluorescent Neuronal Cells v2 dataset
[8]. Fluocells comprise three fluorescence microscopy



cFOS Orexin CTb LIVECell

Model Precision  Recall DICE Precision  Recall DICE Precision  Recall DICE Precision  Recall DICE mAP
Score Score Score Score

Ours (After AL) 0.81 0.78 0.71 0.32 0.39 0.29 0.85 0.66 0.63 0.88 0.76 0.77 0.560

Baseline (Before AL) 043 0.77 0.54 0.12 0.22 0.14 0.43 0.57 0.47 0.55 0.33 0.24 0.290

Cell ResUNET [8] 0.79 0.62 0.69 0.33 0.25 0.28 0.67 0.63 0.65 - - - -

UNET [27] 0.51 043 0.41 0.18 0.13 0.15 0.41 0.54 0.37 0.82 0.27 0.36 0.1420

Cascade Mask RCNN [4] — - - - — - - - - — - - 0.4790

Table 1. Performance comparison of our AL framework with different models, on the Fluocells dataset (cFOS, Orexin, and CTb stains)
and the LIVECell dataset.

image collections, where rodent neuronal cell nuclei (1st and 3rd rows) display zoomed-in subsections with
and cytoplasm are stained with cFOS, the b-subunit of their corresponding masks overlaid.
Cholera Toxin (CTb), and orexin markers, highlighting
their anatomical and functional characteristics. Ground Before Active Learning, our model struggled to accu-
truth annotations for these images are publicly available. rately capture neurons, often producing blob-like masks
with a significant number of false positives. However, in
LIVECell dataset: For performance validation, we post-active learning, our model demonstrates an enhanced
compared our pre-trained model and UNET on the LIVE- capability to precisely identify and generate individual
Cell dataset [10], a comprehensive, high-quality dataset of masks for specific neurons. By employing a detection
phase-contrast images that have been manually annotated model followed by image segmentation, we effectively
and validated by experts. It includes over 1.6 million address the issue of multiple neurons being amalgamated
cells, encompassing a wide range of cell morphologies under a single mask. As illustrated in the zoomed-in
and culture densities. Prior to model input, all images subsections in Figure 2, our model successfully generates
underwent standard pre-processing procedures, including distinct masks for neurons even in close proximity. Ad-
intensity normalization and patching. ditionally, the intensity-based thresholding significantly
reduces false positives, resulting in cleaner and more
3.2. Active Learning performance on SOM-Cre accurate segmentation.

mouse line dataset

We compare our model’s performance with UNET
[26] using the same data samples. As shown in Figure
2, UNET exhibits a higher occurrence of false positives
and often misses smaller-sized neurons. The zoomed-in
sections reveal that the segmentation masks generated by
UNET contain significant broken masks as well.

To evaluate the effectiveness of our Active Learning
pipeline on novel data, we employ unseen SOM-Cre mouse
line samples from the Allen Brain Data repository, which
differ in neuron size and structure from our training set. As
a result, the current model checkpoint shows suboptimal
performance on this new dataset. To address this domain

shift, we generate preliminary (dirty) ground truth using 3.3. Evaluation on Fluocells v2 and LIVECell
our neuron detector on a strategically chosen subset of

samples, then refine these annotations manually via the dataset

Active Learning loop. These corrected samples, along To establish the baseline performance of our AL pipeline,
with their key points, are used by the segmentation model first we use the Fluocells v2 dataset and compare the
to generate the corresponding masks. The generated results with those obtained using UNET. We utilize the
masks are further refined using an intensity thresholding existing test set for qualitative and quantitative evaluation.
parameter, which enables the elimination of extraneous The pre-processed, normalized images are passed through
neurons, thereby producing a more accurate and cleaner the neuron detector and segmenter, and the DICE score
ground truth mask. After pre-processing, the images and [9] is computed between the model’s output and the
their masks are converted into patches and fed into our corresponding ground truth. Figure 3 and Table 1 illustrate
model for fine-tuning. We conduct minimal fine-tuning the quantitative and qualitative results of our model and
(approximately 10 epochs) and present the qualitative UNET on samples corresponding to the three stains present
results of our model before and after Active Learning in the dataset. Initially, we observe that our model’s results
as seen in Figure 2. It presents distinct sections of the include the actual neurons (true positives) but also a sig-
mouse brain, accompanied by the masks generated by nificant number of false positives, resulting in a low DICE
our pipeline before and after the application of Active score. To address the issue of excessive false positives, we
Learning. In addition to the full section masks, the top rows apply intensity thresholding to the generated masks. As
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demonstrated in Figure 3, this process effectively removed
the false positives, leading to a significant increase in the
DICE score and producing a cleaner output mask. This
improvement was consistently observed across all three
stains — cFOS, CTb, and orexin.

While UNET achieves decent overall performance
and a comparable DICE score, our model demonstrates
superior performance, particularly in handling samples
with varying intensity levels. UNET struggles to capture
low-intensity neurons, resulting in missed detections and a
lower DICE score in such cases. In contrast, our model is
better equipped to handle these variations, leading to more
accurate segmentation and higher overall performance. A
similar trend is observed for the LIVECell dataset (Table
1), where our model achieves superior performance across
all metrics. Notably, it outperforms Cascade Mask R-CNN
[4], the current state-of-the-art for cell segmentation, along
with the other models.

Using the Fluocells, LIVECell and SOM-Cre Mouse
line datasets, we demonstrate the performance of our
framework.  While the improvements in DICE score
are sometimes modest, these small gains can be crucial
for large-scale brain-wide analyses where even a slight
reduction in false positives or missed neurons can substan-
tially influence downstream cell counting or morphology
assessments. Moreover, the active learning component
accelerates annotation, offsetting the complexity of the
pipeline. Furthermore, it is important to note that once the
intensity parameter is adjusted, the segmentation results
closely match the ground truth, leading to near-perfect
ground truth masks.

4. Conclusion

We present Segment AnyNeuron, an active learning-based
framework for neuron segmentation using Detectron2 and
HQ-SAM. This approach reduces manual annotation needs
by iteratively refining the model with minimal ground
truth correction while maintaining high performance.
Advanced preprocessing, including intensity normalization
and patch-based segmentation, ensures clean inputs, and
intensity-based thresholding further enhances accuracy.
We validate our framework on the Fluocells, LIVECell,
and SOM-Cre mouse line datasets, showing high accuracy
and robustness. Active Learning on the SOM-Cre dataset
further improves performance, mitigating the cold-start
problem and optimizing manual annotation of key samples.

While our approach adds overhead from the two-stage
detection and segmentation pipeline, the Active Learning
loop ultimately reduces total manual annotation effort
compared to a fully supervised approach, making the
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added compute cost worthwhile for large datasets. Looking
ahead, automating intensity-threshold selection and further
refining HQ-SAM for smaller neuronal structures are
promising directions to explore. Despite these limitations,
Segment AnyNeuron offers a robust and adaptable solution
for neuron segmentation, combining state-of-the-art models
with Active Learning efficiency. This method enhances
segmentation accuracy and provides a scalable approach
for complex medical imaging datasets, paving the way for
future innovations in medical image analysis.
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