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Figure 1. Our method, CLIPDraw++ synthesizes vector sketches conditioned on an input text prompt using simple primitive shapes like
circles, straight lines, and semi-circles, with focus on the highlighted words. More results are in the Supp.

Abstract

With the goal of understanding the visual concepts that
CLIP associates with text prompts, we show that the latent
space of CLIP can be visualized solely in terms of linear
transformations on simple geometric primitives like straight
lines and circles. Although existing approaches achieve this
by sketch-synthesis-through-optimization, they do so on the
space of higher order Bézier curves, which exhibit a waste-
fully large set of structures that they can evolve into, as
most of them are non-essential for generating meaningful
sketches. We present CLIPDraw++, an algorithm that pro-
vides significantly better visualizations for CLIP text em-
beddings, using only simple primitive shapes like straight
lines and circles. This constrains the set of possible out-
puts to linear transformations on these primitives, thereby
exhibiting an inherently simpler mathematical form. The
synthesis process of CLIPDraw++ can be tracked end-to-
end, with each visual concept being expressed exclusively
in terms of primitives.

1. Introduction
Simplified representations like sketches and verbal descrip-
tions are potent mediums for communicating ideas, focus-
ing on the core essence of the subject. While language con-

*Equal contribution.

veys abstract meanings, sketches capture visual specifics.
For instance, a designer might sketch a client’s ideas for
clarity during reviews of design plans, and automating this
process could cut labour costs. Understanding the impor-
tance of this text-to-sketch generation task, several research
initiatives have explored text-conditioned sketch genera-
tion, utilizing the CLIP model [24] and the transforma-
tive diffusion models [25]. CLIPDraw [5] creates draw-
ings from text using pretrained CLIP text-image encoders,
while VectorFusion [11] adapts text-guided models for vec-
tor graphics, without relying on extensive datasets. Such
models are thus finding a growing role in art and design
[7, 11], often surpassing human performance in many tasks
[12, 26]. However, the complexity of the underlying algo-
rithms tend to grow with with their performance, making
them less transparent, and hence, less controllable.

To this end, we aim to cast the problem of sketch synthe-
sis exclusively in terms of mathematically tractable primi-
tives. The atoms of our algorithm consist of basic geomet-
ric shapes like straight lines, circles, and semi-circles, with
a synthesis process that can be completely summarized as
a linear transformation over these basic shapes. The benefit
of such a construction is two-fold – (1) the number of pa-
rameters that need to be optimized is dramatically reduced,
and (2) each step of the synthesis process can be clearly
tracked and expressed via a closed form linear expression.
Our approach is based on synthesis-through-optimization,
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that visualizes using vector strokes, concepts encoded in
the representation space of CLIP [24] corresponding to nat-
ural language text prompts. Such vector strokes, as em-
phasized by CLIPDraw [5], enable clearer breakdowns and
simpler component attribution than pixel images. While ad-
vanced models like diffusion can produce high-quality pixel
sketches [25], their pixel complexity can obscure underly-
ing logic. However, using vectorized strokes, especially
when limited to primitive shapes, enhances clarity and a
better understanding of the steps that a model takes to syn-
thesize a sketch, while significantly lowering the number of
parameters required to achieve state-of-the-art results.

In this paper, we present CLIPDraw++, an algorithm that
can synthesize high-quality vector sketches based on text
descriptions. It not only synthesizes sketches but also tracks
the evolution of each vector stroke from the initial geomet-
ric primitives, like straight lines, circles, and half-circles, to
the final output. Leveraging the cross-attention maps from
a pretrained text-to-image diffusion model [25], we define
an initial sketch canvas as a set of primitive shapes, with
their parameters tuned using a differentiable rasterizer [15].
In order to ensure minimality and a simple mathematical
form, we have constrained the primitives to adhere to spe-
cific initial shapes with more rigid geometries than Beźier
curves. Our CLIPDraw++, built upon CLIPDraw [5], dif-
ferentiates itself by using predefined primitive shapes for
strokes, emphasizing simplicity, while CLIPDraw initial-
izes strokes with complex, arbitrarily-shaped Bézier curves,
that exhibit a wastefully large set of shapes which they
can transform into, but are not necessary for producing
meaningful sketches. Our method linearly transforms these
simple primitives into corresponding sketch strokes, unlike
the more abstract and harder-to-understand sketches pro-
duced by CLIPDraw. Our CLIPDraw++ synthesizes supe-
rior sketches in a more efficient manner, both in terms of
performance and memory usage, when compared to the ex-
isting methods. This improvement is attributed to the use
of fewer primitives, each with fewer control points strategi-
cally distributed across the canvas. Unlike prevalent gener-
ative models [19], including diffusion models [25] that de-
mand extensive parameter training, our CLIPDraw++ syn-
thesizes sketches via optimization and operates without any
specific training. Instead, a pretrained CLIP model is used
as a metric for maximizing similarity between the input text
prompt and the synthesized sketch.

In summary, we make the following contributions – (1)
Pose the problem of sketch synthesis via optimization in
terms of a well understood mathematical framework of
learning linear transformations on simple geometric primi-
tives; (2) Propose a sketch canvas initialization approach us-
ing primitive shapes. By leveraging the cross-attention map
of a pre-trained diffusion model, we strategically distribute
these primitives across the canvas based on necessity. Fur-

thermore, by initializing these primitives with a low opac-
ity, the model accentuates only those primitives pertinent to
the text prompt; (3) Primitive-level dropout as an innova-
tive technique to “regularize” our optimization. By doing
so, we effectively diminish over-optimization, cut down on
noisy strokes, and elevate the overall quality of the synthe-
sized sketches; (4) Extensive qualitative and quantitative ex-
periments demonstrate the usefulness of our novel compo-
nents in delivering performance surpassing existing meth-
ods, while exhibiting a significantly simpler and parameter-
efficient synthesis scheme.

2. Related Works
Sketch Generation: Free-hand sketches communicate ab-
stract ideas leveraging the minimalism of human visual per-
ception. They aim for abstract representations based on
both structural [3] and semantic [31] interpretations. Digital
sketching methods aiming to mimic human drawing span a
wide range of representations, from those founded on the
input image’s edge map [4, 14, 16, 17, 29] to ones that
venture into a higher degree of abstraction [2, 5, 8], typ-
ically represented in vector format. In the realm of vec-
tor sketch creation, initiatives such as CLIPasso [31] and
CLIPascene [30] are dependent on an image input; mean-
while, approaches like CLIPDraw [5], VectorFusion [11]
and DiffSketcher [32] engage with text-based conditional
inputs, standing distinct from other unconditional method-
ologies. Specifically, CLIPDraw [5] employs optimization-
based sketch synthesis, whereas both VectorFusion [11]
and DiffSketcher [32] adopt diffusion-based approaches,
with VectorFusion focusing on optimizing in the latent
space, making it more light-weight and efficient compared
to DiffSketcher that performs its optimization in the image
space. In this paper, we explore text-conditioned sketch
synthesis. Distinct from the existing approaches, we show
that complex sketches can be synthesized as simple linear
transformations on simple geometric primitives, with our
novelty lying in the minimalism of our formulation.
Synthesis through Optimization: Instead of directly train-
ing a network to generate images, a different strategy
called activation maximization optimizes a random image
to match a target during evaluation [21]. CLIPDraw [5] ad-
vances this approach by using a CLIP language-image en-
coder [6, 24] to lessen the disparity between the synthesized
image and a specified description, focusing on broad fea-
tures rather than fine details. Although synthesis through
optimization often results in unnatural or misleading im-
ages [20], employing ‘natural image priors’ can maintain
authenticity [21, 22], which often involve the restrictive and
computationally intensive use of GANs. In this paper, we
extend the capabilities of CLIPDraw to synthesize sketches
of objects and scenes through geometric transformations of
primitive shapes, contrasting from CLIPDraw’s approach,
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which utilizes complex and abstract sketches created with
hard-to-analyze, arbitrarily-shaped Bézier curves.
Vector Graphics: We leverage the differentiable renderer
for vector graphics pioneered by [15], a tool no longer con-
fined to vector-specific datasets thanks to recent advance-
ments. The advent of CLIP [24], which fosters improved
visual text embedding, has spurred the development of ro-
bust sketch synthesis techniques including CLIPDraw [5],
CLIP-CLOP [18], and CLIPascene [30]. The recently in-
troduced VectorFusion [11] also integrates a differentiable
renderer with a diffusion model, aiding in the production of
vector graphics creations like iconography and pixel art.
Simplified representations for sketches: Current sketch
research on making neural sketch representations transpar-
ent and simplified is significantly limited, primarily concen-
trating on interpreting human sketches through stroke-level
abstraction [1] and stroke location inversion [23]. How-
ever, as generative AI finds increasingly growing use in
content creation, breaking down the abstraction inherent in
such models for sketches [5, 30, 31] becomes ever more im-
portant. We present an approach that not only synthesizes
sketches in terms of mathematically simple primitives, but
also provides human-understandable insights into the repre-
sentation space of foundation models like CLIP [24].

3. CLIPDraw++
In this work, we aim to synthesize sketches by express-
ing them as a collection of linearly transformed primitives,
which could be evolved from an initial canvas into a set of
strokes in a final sketch in a trackable manner based on an
input text. We begin by populating a canvas with primitive
shapes like straight lines, circles, and half-circles, detailed
in Sec. 3.2. We then track their progress during the sketch
synthesis process outlined in Sec. 3.3, guided by the training
criteria specified in Sec. 3.4. An illustration of the proposed
approach is provided in Fig. 2.

3.1. Sketch Synthesis from Primitives
Given an initial canvas C composed of a set of primitives
{p1, p2, ..., pn} as C = p1 ⊕ p2... ⊕ pn, we qualitatively
show that any semantically meaningful sketch Y can be
constructed as a transformation f (·) on C such that S =
f(C) = f1(p1) ⊕ f2(p2)... ⊕ fn(pn), where f1, f2, ..., fn
are linear transformations on the primitives, and ⊕ denotes
the composition of the primitives into a single canvas. In
other words, any primitive p ∈ C maps to a concept y ∈ Y,
the target sketch as y = F ·p, where F is a matrix encoding
the linear transformation. The learning problem thus be-
comes finding the best approximation F̃ of F such that p is
appropriately transformed to depict some target concept in
Y. Thus, given an initial canvas and a target sketch, across
all sub-concepts yi ∈ Y in the target, the following objec-
tive needs to be optimized:

min
F

l(CF ,Y) = argmin
i,F

∑
j

||yi − F̃ · pj || (1)

where F = {F̃1, F̃2, ..., F̃n} is a set of linear transforma-
tions applied on {p1, p2, ..., pn} from C respectively to ob-
tain an approximation of the target sketch Y, and CF de-
notes the sketch obtained under the set of transformations
F applied on C.

However, the target concept sketch Y is not available,
since the main objective is to synthesize it from a textual de-
scription. We thus choose a vision-language model, specif-
ically, CLIP [24], and use its latent representations as a
proxy for the target sketch. The representation space of
CLIP is unified, i.e., natural language sentences and their
corresponding visual counterparts have the same embed-
ding. So, a sketch that captures the same semantics con-
veyed through a text prompt should have the same embed-
ding in the representation space of CLIP. We thus make the
CLIP text and sketch embeddings act as proxy representa-
tions for the ground-truth concept Y sketch and the syn-
thesized sketch CF respectively and optimize the following
objective which is equivalent to Eq. (1):

min
F

l(CF , xt) = argmin
F

∣∣∣∣∣
∣∣∣∣∣T (xt)− I

(⋃
i

F̃i · pi

)∣∣∣∣∣
∣∣∣∣∣ (2)

Thus in the formulation of Eq. (2), the text prompt xt serves
as a proxy for the ground truth Y. The functions I and T
denote the image and text encoders of CLIP, respectively.

3.2. Primitive-based Canvas Initialization
We initialize the sketch canvas by first identifying the es-
sential landmark points derived from the textual input. Sub-
sequently, these landmarks are filled using primitive shapes
like straight lines, circles, and half-circles.
Identifying Landmarks using Attention Maps: CLIP-
Draw++ initializes a canvas using primitives, which re-
quires identifying important landmarks on that canvas based
on the text input. For that, we employ the DAAM [28] gen-
erated token wise cross-attention mechanism as an integral
component derived from the UNet architecture from latent
diffusion model [25]. Specifically, we capture attention fea-
tures separately from both upper and lower sample blocks,
merging them into a unified attention map. This composite
attention map is then normalized using the softmax function
to create a probabilistic distribution map. This distribution
map serves as the basis for our subsequent task of select-
ing k positions. The magnitude of each point within this
attention-derived distribution map is leveraged as a weight
parameter to guide the selection process. This ensures
that the selection of positions is influenced by the saliency
and significance of the underlying attention-based features.
To improve convergence towards semantic depictions, we
place the primitive shapes or the initial strokes based on the
salient regions (here patch) of the target image.
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Figure 2. CLIPDraw++ comprises strategic canvas initialization, which utilizes diffusion-based cross-attention maps and a patch-wise
arrangement of primitives, along with a primitive-level dropout (PLD). The proposed model, coupled with the use of a pre-trained image
(I) and text (T ) encoders from the CLIP model for similarity maximization, positions itself as an efficient and user-friendly tool in the
realm of AI-driven sketch synthesis. The highlighted word is used to create the cross-attention maps.

Patch-based Initialization: Point-based initialization is ef-
fective for similar stroke types [5, 31], but determining the
right primitive for a specific point on the attention map can
be difficult. Additionally, placing different primitives at a
single location is problematic as it may result in clutter due
to high point density, leading to uneven primitive distribu-
tion and messy sketches. To address this, our CLIPDraw++
introduces primitives in fixed ranges or ‘patches’, represent-
ing all points within, rather than at precise attention map lo-
cations. It divides a 224×224 canvas into patches of 32×32.
Each patch receives a mix of basic primitives: straight lines,
circles, and semi-circles, promoting uniform shape distribu-
tion around the attention map local maxima. The benefits of
patch-based over point-based initialization are discussed in
Sec. 4.3 and illustrated in Fig. 7.
Initializing Sketch Canvas with Primitives: We define
a sketch as a set of n strokes {s1, . . . , sn} appearing in
a canvas. In order to elucidate the origins and evolution
of these strokes, we initialize our canvas with primitive
shapes, such as straight lines, circles, and semi-circles.
Each primitive shape is created using a two-dimensional
shape that employs two to four control points, represented
as si = {pji}cj=1 = {(xi, yi)

j}cj=1 and an opacity at-
tribute αi; where c ∈ {2, 3, 4} denotes the number of
control points. For example, straight line has 2 control
points, while semi-circle and circle have 3 and 4. We
incorporate the position of each control point and opac-
ity of the strokes into the optimization process and use
the semantic knowledge in CLIP to guide the synthesis
of a sketch from a textual description. The parameters of
the strokes are fed to a differentiable rasterizer R, which

forms the raster sketch S = R((s1, α1), . . . , (sn, αn)) =
R(({pj1}cj=1, α1), . . . , ({pj1}cj=1, αn)).

3.3. Optimizing Sketch Synthesis
Unwanted strokes can introduce noise into a sketch, mak-
ing the removal of unnecessary strokes vital for automated
sketch creation. This section outlines procedures for elimi-
nating noisy strokes, drawing inspiration from existing ma-
chine learning techniques and human sketching practices.
Primitive-level Dropout: Dropout [27] is a regularization
technique for neural networks where random subsets of
neurons are temporarily deactivated during training. This
procedure reduces overfitting by preventing co-adaptation
of feature detectors and promoting a more robust net-
work representation. Inspired by the success of dropout in
learning robust representation, we propose primitive-level
dropout (PLD) in our CLIPDraw++ model. This technique
focuses on optimizing the use of each sketch primitive and
removing any that contribute unnecessary noise. The in-
tuition behind our approach is that limiting the number of
available primitives compels the model to efficiently use
each one to capture the semantics described in the texts,
avoiding their wastage in noisy strokes. By selecting ran-
dom smaller subsets of primitives for each iteration, the
model is encouraged to utilize every primitive across all it-
erations for meaningful sketch representation, thereby min-
imizing their use in creating unnecessary noise.

In each step of the optimization process, a specific num-
ber of primitives, represented by P and determined through
a probability distribution, are intentionally removed, after
which a gradient step is undertaken. Formally, a random
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subset of the original primitives C is selected in each itera-
tion to create a reduced canvas C̃ as follows:

d ∼ Bernoulli(1− P); C̃ = C · dT ,

where d is an n-dimensional row vector of Bernoulli ran-
dom variables, each of whose elements are 1 with probabil-
ity (1 − P), and 0 otherwise. Multiplying d with C masks
out the primitives whose indices correspond to the elements
of d that are 0, while the others are retained. Subsequently,
these P primitives are reintroduced into the optimization
loop at the conclusion of the iteration, with another random
subset of P primitives being removed in the next iteration.
The cyclical approach of introducing, excluding, and then
reintroducing primitives in CLIPDraw++ offers a balanced
optimization, ensuring sketches are not overwhelmed with
strokes but still retain vital elements. Without loss of gen-
erality1, consider the simplified scenario where the number
of primitives n is equal to the number of target concepts
y ∈ Y, and the following holds:

∀ y ∈ Y,∃ p ∈ C, f ∈ F | y = f(p) (3)

In other words, each concept in the target text Y can
be depicted uniquely as a transformation of a certain
primitive, i.e., there exists a one-to-one mapping be-
tween C and Y under F . Now, consider adding η addi-
tional primitives to the primitive set such that C now be-
comes {p1, p2, ..., pn, pn+1, ..., pn+η}. However, the given
premise states that generating Y was achievable using
{p1, p2, ..., pn} only. Therefore the evolution of the addi-
tional primitives {pn+1, ..., pn+η} is not constrained by the
optimization objective, leaving open the possibility of them
lying around the canvas as noisy strokes with no clear mean-
ing. To guarantee sufficiency, i.e., the condition in Eq. (3),
we always overestimate the number of primitives required
to visualize a certain text prompt, to ensure the synthesized
sketch is complete with the required details. However, as
argued formally, this overestimation could leave room for
some noisy strokes crowding up the canvas. Primitive-level
dropout ensures that this does not happen by randomly re-
moving η (proportional to the estimated noise rate) prim-
itives in each iteration, thereby forcing all of the remain-
ing primitives to contribute towards representing something
meaningful. The empirical benefits of this PLD approach
are discussed in Sec. 4.3 and can be seen in Fig. 5.
Initializing Primitives with Diminished Opacity: In tra-
ditional sketching, artists often begin with a light outline or
faint layout, serving as a foundation for the artwork. This
initial phase sets the broader structure and composition. As
the artwork advances, artists intensify strokes, especially fo-
cusing on crucial elements to make them prominent, ensur-
ing each stroke adds value to the overall piece. Drawing
a parallel to the digital realm, in CLIPDraw++, we have

1In general, each concept would be depicted by multiple primitives, but
the central claim of this formalization would still hold.

curated a similar methodology. Here, the initialization of
primitive shapes starts with a low opacity value, denoted
as α. This can be likened to the faint layout artists cre-
ate. As the system begins its optimization process, based
on relevance and significance, the opacity of certain prim-
itives is incrementally increased. This mirrors the artist’s
method of iteratively intensifying strokes that are deemed
crucial to the sketch’s integrity. Formally, in each back-
ward pass, we update the opacity value of a primitive p as
αp ← ∇I(Ltotal); αp > K, where Ltotal is the optimiza-
tion criterion of CLIPDraw++ from Eq. (4) and K is an em-
pirical constant. We retain p in the canvas if the inequality
is met and drop it otherwise. In essence, CLIPDraw++ at-
tempts to replicate the thoughtful and incremental approach
artists employ, blending the nuances of human artistry with
the precision of machine optimization. The advantage of
initializing strokes with diminished opacity is discussed in
Sec. 3.2 and demonstrated in Fig. 7 of the Supp.

3.4. Training Criteria
Our training criteria evaluate the alignment between input
text prompts and the synthesized sketches, including their
augmented versions. In order to measure the similarity, we
employ the pre-trained text and image encoders from the
CLIP model [24]. The ability of CLIP to encode infor-
mation from both natural images (here sketches) and texts,
eliminates the need for additional training. To measure the
alignment of a given text and the synthesized sketch we use
cosine similarity as sim(x, y) = x·y

||x||·||y|| .
Semantic Loss: Our primary objective is to amplify the
semantic similarity between the text prompts and the syn-
thesized sketches. To measure the semantic congruence be-
tween a text prompt P and rasterized version of the syn-
thesized sketch S, we introduce the semantic loss function,
Lsem, designed to ensure semantic coherence and capture
discrepancies between the two modalities.

Lsem = −
M∑
i=0

sim (T (P ), I (Tf (S)))

where Tf indicates randomized affine transformations, and
M denotes the number of transformed variations produced
through augmentations.
Visual Loss: While semantic loss focuses on high-level se-
mantic cues, it may overlook important low-level spatial at-
tributes such as pose and structure. Therefore, to comple-
ment the semantic loss, we introduce a criteria Lvis measur-
ing the geometric congruence between the image generated
by the diffusion UNet and the sketch synthesized by our
model for the same input text, which is computed as:

Lvis = −
M∑
i=0

sim (I (I0) , I(Tf (S)))

where I0 denotes the final image generated by frozen UNet.
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Figure 3. For the text prompt “A standing motorcycle ”, our CLIPDraw++ tracks the evolution of each primitive shape during optimization:
the first row shows a black-and-white synthesized sketch, the next three rows display the development of circles, straight lines, and semi-
circles, and the final row combines these three rows’ compositions. Here “motorcycle” is used to create the cross-attention maps.

Total Loss: The total loss, Ltotal is the summation of two
loss functions (semantic loss Lsem and visual loss Lvis) ex-
plained above, each weighted by their respective coeffi-
cients, λsem and λvis. These two loss functions balance
our sketch synthesis process: semantic loss aligns vector
sketches with textual prompts, while visual loss maintains
low-level spatial features and perceptual coherence. This
combination effectively captures the intricate relationship
between semantic fidelity and geometric accuracy.

Ltotal = λsemLsem + λvisLvis (4)

4. Experiments
In this section, we use CLIPDraw++ to synthesize sketches
from linearly transformed primitives like circles, straight
lines, and semi-circles. We also compare CLIPDraw++
with related methods and conduct ablations to evaluate its
components. More results are in the Supp.

4.1. Sketch Generation from Primitives
As shown in Fig. 3, our CLIPDraw++ model offers the abil-
ity to synthesize sketches whose strokes are linearly trans-
formed primitive shapes like circles (second row from the
top), straight lines (third row), and half circles (fourth row).
These individual strokes can be tracked through their evo-
lution in successive iterations of the optimization process.
Notably, the model intuitively represents different parts of
the synthesized sketch with appropriate primitive shapes.
For example, the chassis and handlebars of the synthesized
motorcycle in Fig. 3 are rendered with straight lines, while
the wheels are depicted using circles and semicircles. Our
model skillfully captures the dynamics of shape or scene
evolution, displaying varying levels of flexibility based on

the degree of freedom, which is linked to the number of con-
trol points in a shape. In the farm example (refer to Supp.
Fig. 1 (b)), it assigns straight lines to simpler structures like
a house’s roof and walls, while more complex elements like
grass and crops are made with semi-circles, providing more
flexibility. Even more intricate structures, like trees, are ren-
dered using circles, the most flexible shape, illustrating the
model’s skill in using various primitives for different lev-
els of complexity. This strategic use of shapes enhances the
model’s ability to create detailed, nuanced sketches. Ad-
ditional examples of sketch generation with primitive level
tracking and overall sketch level tracking are respectively
shown in Fig. 1 and Figs. 2-5 of the Supp.

4.2. Comparison
Our CLIPDraw++ model is compared with five related
methods: CLIPDraw [5], which optimizes Bézier curves
for CLIP-guided sketches; CLIPasso [31], which simplifies
sketches with Bézier curves; CLIPascene [30], which gen-
erates scene sketches from CLIP embeddings; VectorFu-
sion [11], which uses a diffusion model for vector sketches;
and SVGDreamer [33], which creates clearer sketches via
a stroke-based diffusion approach. All models are tested
with their original settings for fair comparison.

Method / Metric CS ↑ PSNR ↑ CLIP-T ↑ BLIP ↑ Conf. ↑
CLIPDraw [5] 0.2578 28.1740 0.3114 0.2611 0.49
CLIPasso [31] 0.2250 27.5000 0.2850 0.2783 0.45
VectorFusion [11] 0.2283 28.3277 0.2949 0.3894 0.44
CLIPascene [30] 0.2000 27.0231 0.2746 0.2551 0.42
SVGDreamer [33] 0.2688 28.7384 0.3132 0.4102 0.61

CLIPDraw++ (Ours) 0.2763 28.6417 0.3365 0.4222 0.58

Table 1. Quantitative comparison with existing methods.

In Tab. 1, we present quantitative experiments to vali-
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Figure 4. Qualitative comparison with quantitative measure between CLIP based approaches CLIPDraw , CLIPasso , CLIPascene , and
diffusion based approaches VectorFusion , SVGDreamer , with our CLIPDraw++. The numbers in green at the top-right corner of each
image indicate the CLIP-T score wrt the text prompt. The highlighted words are used to create cross-attention maps.

date our approach using different evaluation metrics fol-
lowing existing literature [5, 33], including Cosine Simi-
larity (CS) [10], Peak Signal-to-Noise Ratio (PSNR) [9],
CLIP-T Score [24], BLIP score [13], and confusion score
(Conf.) [32]. Our CLIPDraw++ has significantly outper-
formed all other methods in CS, CLIP-T, and BLIP met-
rics, and achieves the second best in PSNR and Conf,
demonstrating its effectiveness. The higher scores in CS,
CLIP-T, and BLIP indicate that CLIPDraw++ generates
sketches closely aligned with the text prompts. Although
SVGDreamer achieves slightly higher PSNR and confusion
scores due to its stroke-based diffusion approach optimized
directly in image space, our method is more efficient and
achieves realistic sketches without extensive optimization.
Furthermore, our high PSNR indicates less supersaturation,
and the confusion score underscores the realism of our gen-
erated sketches.

As demonstrated in Fig. 4, our CLIPDraw++ produces
sketches that are noticeably cleaner and semantically closer

(as indicated by CLIP-T score) than those from CLIPDraw,
likely due to our method’s use of primitive-level dropout
and the initialization of primitives at reduced opacity. Com-
pared to CLIPasso, which simplifies sketches using Bézier
curves but often loses fine details, CLIPDraw++ retains
both clarity and detail without excessive smoothing. In con-
trast to VectorFusion, which employs a diffusion model for
vector sketches but struggles with abstract and less coher-
ent representations, our method ensures more precise and
semantically rich outputs. CLIPascene, while capable of
generating scene-level sketches, often introduces clutter due
to less effective control of primitive placement, whereas
CLIPDraw++ maintains clarity through structured primitive
initialization. Although SVGDreamer produces visually
clearer sketches via a stroke-based diffusion approach, its
optimization time is significantly longer, and it occasionally
lacks semantic accuracy. In contrast, CLIPDraw++ consis-
tently delivers clean sketches with accurate details and se-
mantics. The reduced noise in our sketches is attributed to
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Figure 5. Effectiveness of primitive-level dropout (PLD) for the text prompt “Detailed sketch of Eiffel Tower ”. The sketches in the top
row are synthesized without PLD, while the ones in the bottom row are synthesized with PLD.

the minimized control points, learnable opacity for primi-
tives, and primitive-level dropout, thus reducing the need
for manual intervention and parameter adjustments.

(a) CLIP
attention map

(b) CLIP-based
landmarks

(d) Diffusion-based
landmarks

(c) Diffusion
attention map

Figure 6. CLIP and diffusion attention maps and initializations.

4.3. Model Ablations
In this section, we present selected ablation studies of our
model. Additional ablation results are in Sec. 3 of the Supp.
CLIP-based vs Diffusion-based Initialization: The non-
convex nature of the optimization in CLIPDraw++ is sensi-
tive to how primitives are initialized. We explore two meth-
ods: one using the CLIP attention map (Fig. 6 (a)) and the
other based on the latent diffusion model’s attention map
(Fig. 6 (c)). Local maxima in these maps (Fig. 6 (b) and
Fig. 6 (d)) identify key landmark points. Our findings show
that the CLIP attention map lacks precision, spreading fo-
cus across irrelevant regions, while the diffusion model’s
attention offers more localized and detailed information.
This precision is why we prefer the diffusion-based atten-
tion map for initializing sketches.

(a) Point-based
initialization

(c) Patch-based
initialization

(b) Final sketches
synthesized from (a)

(d) Final sketches
synthesized from (c)

Figure 7. Comparison of results for ‘Eiffel Tower’ and ‘Tank’ for
point-based and patch-based initialization.

Patch-based Initialization: In CLIPDraw++, we use a
patch-based approach for stroke initialization, placing prim-
itives within patches rather than directly at landmark points
on the attention map. This method prevents the clutter and
messiness typical of point-based initialization. As shown
in Fig. 7, sketches created with patch-based initialization

(Fig. 7 (d)) are clearer and more coherent compared to
those from point-based initialization (Fig. 7 (b)). Distribut-
ing primitives within a set range of attention local maxima
(based on patch size) avoids excessive constraints and helps
maintain clarity. This gives the optimizer a clearer view of
the canvas, enabling more effective retention, evolution, or
removal of primitives, resulting in cleaner sketches.
Primitive-level Dropout: Primitive-level dropout enhances
the use of primitives by ensuring each encodes a specific
concept, reducing noisy strokes that add no meaning. PLD
also speeds up convergence by quickly identifying relevant
strokes. As shown in Fig. 5, sketches with PLD (bottom
row) are cleaner and more realistic, while those without
PLD (top row) are noisier. To further assess PLD’s effec-
tiveness, we compared it with a strategy of gradually adding
new strokes during optimization. In Fig. 8, ablation shows
that PLD outperforms this approach in both visual quality
and CLIP-T score. We suspect that abruptly adding new
primitives disrupts the loss landscape’s smoothness, making
optimization harder and resulting in noisier sketches. More
results are in Sec. 3.1 and Fig. 6 of the Supp.

(a) Initialization (b) First Addition (c) Second Addition (d) Synthesized Sketch

0.30

(e) PLD

0.33

Figure 8. Comparison of efficacy of PLD with the strategy of se-
quentially adding extra primitives as required.

5. Conclusion

We introduced CLIPDraw++, a model for sketch synthe-
sis through optimization using simple geometric primitives
like straight lines, circles, and semicircles. Our model cre-
ates highly expressive sketches through simple linear trans-
formations on these primitives, incorporating techniques
such as strategic sketch canvas initialization for synthesiz-
ing clean sketches and primitive-level dropout (PLD) for
producing sketches with low noise, collectively enhance the
model’s efficiency and output quality. The extensive exper-
iments and ablation studies underscore the model’s supe-
riority over existing methods, showcasing its ability to pro-
duce aesthetically appealing and semantically rich sketches.
CLIPDraw++ excels in AI-driven art creation by merging
advanced optimization with intuitive design principles.
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