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6. Results
We include higher-resolution versions and more examples
for several of the figures in the main paper.

Figure 8 shows perspective images corresponding to our
inpainted panoramas for easier evaluation of qualities like
line straightness.

Figure 9 adds more viewpoints of our comparison to
screened Poission hole filling in MeshLab from Figure 3.

Figure 11 shows larger versions of our failure case ex-
amples from Figure 7, together with the respective input
images.

Figure 10 shows perspetive images corresponding to
those in Fig 4 for easier visual comparison.

7. Radiance Fields Methods
Here we add details and results from our experiments with
methods that rely on radiance fields for object removal.

We ran these experiments on Matterport3D [5] and Scan-
Net [9] data. For Matterport3D we show a small studio
apartment, consisting of 180 images, and a larger multi-
room house, consisting of 366 images.

7.1. Nerfiller [56]
We use the authors’ nerfstudio [45]-based implementation,
which runs 30 thousand steps to create an initial NeRF and
30 thousand steps to inpaint masked regions. The default
method for training the initial NeRF is nerfacto-nerfiller,
which is very similar to standard nerfacto and only uses
poses RGB images as input. We found that in these indoor
spaces depth-nerfacto, which uses posed RGB and depth
images, creates a better initial NeRF with less floater arti-
facts, as shown in Figure 12. Therefore, we use the depth-
based NeRF variant as initialization in our experiments.

Meshes and some panoramas on Matterport3D data are
shown in Figure 5 of the main paper, while and Figure 13
shows more panoramas for each space. Note that we train,
inpaint and render Nerfiller and any other radiance fields on
512 → 512 perspective images, as they are intended to be
used, and only convert the outputs to panoramas afterwards
for easier comparison with our results.

The figures show both the smaller (top) and larger (bot-
tom) spaces. We trained a single NeRF/Nerfiller for the
small space, but for the large space we tried both train-
ing on the entire space and separately on the living room
and bedroom. The main paper shows results from training
one model per space. Here the bottom of Figure 13 shows

panoramas that were obtained by training one model for the
living room (first two images below the mesh snapshots)
and one model for the bedroom (next two rows). The liv-
ing room dataset contains 114 images, while the bedroom
contains 30 (the inpainting step of Nerfiller requires the im-
age number to be a multiple of 4, so we dropped two floor-
facing frames for a total of 28 during inpainting). As men-
tioned in the main paper, the results are not markedly dif-
ferent, and arguably slightly worse with a separate model
per room. Therefore, poor results cannot be attributed to
insufficient NeRF capacity and are inherently related to the
sensitivity to shadows and light reflections of off-the-shelf
Stable Diffusion inpainting.

Additionally, we show the mesh extracted from Ner-
filler’s inpainted result via Poisson surface reconstruction
on the ScanNet test scene in Figure 14. Due to the poor
depth and inaccurate poses in this dataset, and inpainting
process that creates blobs around volumetric density, the
mesh is unrecognizable. The figure also shows a few frames
rendered from the inpainted model, demonstrating a reason-
able, but not seamless, inpainting result.

7.2. Instruct-NeRF2NeRF [15], Instruct-
GS2GS [49]

Similarly to Nerfiller, Instruct-NeRF2NeRF requires an ini-
tial NeRF, which is then trained for 15 thousand steps with
a prompt. Therefore, we again start from depth-nerfacto
for higher accuracy and fewer floaters in the representation
that will be modified. As shown in Figure 12, 3D Gaussian
splatting has fewer artifacts than both NeRF variants on this
data, so we also test Instruct-GS2GS.

We tested Instruct-NeRF2NeRF with prompts remove
all furniture from this space, empty room, Show this as an
empty room without furniture. Keep the current floor, walls,
ceiling, windows and doors., i.e. we tried prompts for fur-
niture removal of different length and specificity. For each
prompt we followed the recommended practice of verifying
that inpainting on a few images from our dataset results in
reasonable results via the Instruct-Pix2Pix HuggingFace
page (https://huggingface.co/spaces/timbrooks/instruct-
pix2pix). We observed the same trend for all of them,
which is demonstrated in Figure 15: the representation
progressively gets more filled with floaters and discolored
over iterations. Furniture is not removed, as we can still see
outlines of the couch, TV, bed, cupboards. Structure is not
kept, as we clearly see that the floor and kitchen built-ins
get equially discoloured. It seems that the global prompt is

https://huggingface.co/spaces/timbrooks/instruct-pix2pix
https://huggingface.co/spaces/timbrooks/instruct-pix2pix


Figure 8. Pairwise comparisons of perspective renders of furnished inputs and results defurnished using our pipeline. This projection
highlights some remaining issues with straight wall/floor/ceiling edges, which do not always get resolved, even when using Canny Con-
trolNet.



(a) Input mesh (b) Mesh without furniture (c) MeshLab [7] screened Poisson (d) Our simplified defurnished mesh

Figure 9. Hole filling comparison between MeshLab’s screened Poisson hole filling [7] and our proposed simplified defurnished mesh
method. Poisson re-meshing tends to warp surfaces between floors and walls, while they do not interfere in our SDM.

only leading to amplification of the floaters present in the
initial NeRF.

Therefore, we try the variant of the method based on the
cleaner Gaussian splatting representation, as shown in Fig-
ure 16. We find this method to be better at scene modifica-
tion and in particular object removal, however, it is not spa-
tially precise. For instance, the word remove causes removal
of items such as the table, sofa, bed, coffee machine, regard-
less of whether the prompt asks to remove all furniture, just
the sofa, or just the TV. Notably, with the prompt remove the
TV, the TV remains in the scene, while all the aforemen-
tioned objects get removed. Thus we experimented with
more localized scene modification. Similarly, the prompt
make the sofa green successfully makes the sofa green, but
also turns the walls, sink, and kitchen island top, slightly
green, i.e. this kind of modification is also not precise. We
also noticed that turning objects into geometrically similar
objects works, e.g. a horse statuette into a zebra statuette,
but removal, even if successful, typically leaves artefacts
as observable in Figure 16. Note that for scene modifica-

tion the default 7.5 thousand steps recommended by the au-
thors were sufficient, however, for object removal at least
20 thousand steps were necessary to see the majority of the
object’s geometry removed. All images here are rendered
after 30 thousand steps.

With this we conclude that global SDS-based object re-
moval is not sufficiently precise for our purposes.

8. Quantitative Evaluation on Synthetic Data

To evaluate the performance of our method against Ner-
filler, we conducted experiments using synthetically fur-
nished 360° panoramas and corresponding mesh. We be-
gan with a dataset of unfurnished 3D spaces, represented
as meshes and corresponding panos. To simulate furnished
environments, we procedurally insert 3D furniture objects,
and their approximate shadows, into both the mesh and the
associated panos. This process creates pairs of ”furnished”
meshes and panos. Subsequently, we apply the same de-
furnishing techniques as described before - vanilla Stable



(a) Input (b) Defurnished via Stable (c) Defurnished via CN (d) Defurnished via CN
images Diffusion with Thibaud Canny weights with our fine-tuned Canny weights

Figure 10. Ablation of control method used to guide defurnishing (shown as perspective crops from Fig. 4 for easier viewing). Plain
SD inpainting often results in warped, unrealistic geometry, such as the wall-floor fusion in the first two rows. The use of Canny edge
guided CN makes the inpainting process follow the underlying structure, but off-the-shelf weights tend to hallucinate new room features
when removing large furniture items (see the third row), while our fine-tuned weights preserve the wall structure correctly.

Diffusion (SD) inpainting, ControlNet (CN) inpainting with
two sets of Canny edge weights (Thibaud’s and ours), and
Nerfiller, to the furnished panos and mesh. Finally, we

quantitatively compare the defurnished results against the
original, unfurnished panos using the same metrics as in
Table 1. This comparison allows us to assess the effec-



(a) (b)

(c) (d)

(e) (f)

Figure 11. Failure case examples. Ignored control signal: The kitchen island in a) is largely removed in b), despite the existence of
corresponding Canny edges. Hallucination: after removing the furniture in c) a radiator is hallucinated in d). Spurious shadows: the
shadow of the sofa in e) is not fully removed in f)



(a) Ground-truth (b) RGB-only NeRF (c) RGB & depth NeRF (d) RGB 3DGS

Figure 12. Radiance field initialization comparison. Posed RGB-only NeRF (nerfacto and nerfacto-nerfiller) exhibits more floater
artifacts than posed RGB-D NeRF (depth-nerfacto), while posed RGB-only 3D Gaussian splatting (splatfacto) is cleanest.



(a) Original (b) Defurnished with Nerfiller [56] (c) Defurnished with our method

Figure 13. Defurnishing comparison with a radiance field based method Nerfiller [56].



Figure 14. Inpainted frames and mesh extracted via Poisson surface reconstruction on Nerfiller’s inpainted model on the ScanNet scene
from Section 4.2.

Table 2. Quantitative comparison on synthetic data between ground truth and inpainting results. Our proposed method (CN Canny
Ours) achieves superior inpainting performance compared to vanilla SD and CN Canny Thibaud, as indicated by the metrics, especially
within the masked region. Minor differences in overall image metrics may reflect Nerfiller’s higher global image quality.

Metric SD CN Canny
thibaud

CN Canny
ours Nerfiller

MSE (↑) 0.006 0.006 0.006 0.005
PSNR (↓) 26.066 25.661 26.732 26.538
SSIM (↓) 0.787 0.783 0.790 0.803
LPIPS (↑) 0.058 0.063 0.053 0.095
JOD (↓) 8.018 7.933 8.177 8.192
MSE (Masked) (↑) 0.001 0.001 0.001 0.001
PSNR (Masked) (↓) 34.343 34.128 35.161 33.040
SSIM (Masked) (↓) 0.988 0.988 0.988 0.988
LPIPS (Masked) (↑) 0.004 0.005 0.004 0.009
JOD (Masked) (↓) 8.970 8.961 9.003 8.691

tiveness of each defurnishing method in reconstructing the
original unfurnished scene. We also performed a compari-
son only inside the masked region where the furniture was
added, to evaluate the performance of each method on the
inpainted area specifically. The results of this experiment
can be found in Table 2.

The quantitative comparison on synthetic data reveals
several key insights into the performance of different de-
furnishing methods. Overall, our proposed method consis-
tently demonstrates strong performance, particularly within
the masked inpainting region, where it outperforms all
other approaches, indicating superior reconstruction accu-
racy. Thus, our method excels at the key objective - recreat-
ing the area where the furniture was removed.

When considering the entire image, CN Canny Ours still
performs well, achieving the highest PSNR and a compet-
itive LPIPS. Nerfiller demonstrates the highest SSIM and
JOD across the entire image. This suggests that while CN
Canny Ours excels in inpainting accuracy, Nerfiller may
produce a more globally consistent and visually appeal-
ing result. This could be due to the nature of the Nerfiller
method, which is designed to produce a full 3D reconstruc-
tion and then render a 2D image. The vanilla SD method

performs the worst in most global image metrics.
Comparing the two ControlNet methods, CN Canny

Ours consistently outperforms CN Canny Thibaud, indi-
cating that our optimized weights contribute to improved
defurnishing performance. In summary, CN Canny Ours
provides a strong balance between inpainting accuracy and
overall image quality, making it a highly effective defur-
nishing method. Nerfiller, while potentially less accurate in
the inpainting region, produces a high-quality overall im-
age.

The root-mean-squared model error reported in Sec-
tion 4.2 is calculated as a cloud-to-mesh error, where the
cloud is the model we are evaluating and the mesh is the
ground-truth unfurnished mesh. The fact that, on avergae,
Nerfiller’s 3D model is an order of magniture less accurate
than ours is a strong signal that radiance field-based method
are currently not suitable for applications that require high
metric accuracy of the underlying 3D models.



(a) Ground-truth (b) 1,000 steps (c) 5,000 steps (d) 10,000 steps (e) 15,000 steps

Figure 15. Instruct-NeRF2NeRF [15] experiments on furniture removal. The prompt used was remove all furniture from this space. The
modified scene gets progressively blurrier over time, due to amplification of floaters in the initial NeRF.



(a) Ground-truth (b) remove all furniture
from this space

(c) remove the TV (d) remove the sofa (e) make the sofa green

Figure 16. Instruct-GS2GS [49] experiments on furniture removal and modification. The prompt used for each experiment is shown in the
captions above. While better than Instruct-NeRF2NeRF, Instruct-GS2GS is not sufficiently spatially accurate for our purposes, as evident
from the removal of the same objects regardless of the exact prompt in (b), (c), (d), and from the green tinting of other surfaces besides the
sofa in (e).


