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Abstract

With the more realistic convergence of Deepfakes, its’ iden-
tification becomes more demanding. Recently, numerous
deepfake detection techniques have been proposed, most of
which are in the spatio-temporal domain. While these meth-
ods have shown promise, many of them neglect convincing
artifacts that exhibit different patterns across frequency do-
mains. This research proposes WaveDIF, a strict frequency
domain, lightweight deepfake video detection algorithm us-
ing wavelet sub-band energies. In WaveDIF, for feature ex-
traction, each video undergoes a Discrete Fourier Trans-
form to filter out high-frequency noisy details (quite evident
in deepfakes). These representations are then decomposed
into their respective wavelet sub-bands –LL (Low-Low), LH
(Low-High), HL (High-Low), and HH (High-High) passing
them through a Haar Filter, following which the energy val-
ues (particular to each sub-band) are computed. These en-
ergy values are then used to learn a linear decision bound-
ary (using regression analysis), which is then used for clas-
sification. This enables an interpretable, lightweight deter-
ministic technique for the detection of synthesized videos,
besides achieving an accuracy comparable to the state-of-
the-art. Experimental results on popular deepfake video
datasets shows over 92% accuracy for in-dataset evalua-
tion, and 88% accuracy for cross dataset evaluation.

1. Introduction

Deepfakes are artificially generated videos in which the fa-
cial expression or contours of any source is replaced or
transformed or concatenated with that of a target subject
[6, 18, 20, 24, 34]. Deepfakes, in recent times are becom-
ing very realistic, and thus can have severe negative societal
impact [2, 9], and thus necessitates the need for having de-

(a) Conventional frequency-based Deepfake Identification

(b) WaveDIF: Wavelet energy-based Deepfake Identification

Figure 1. WaveDIF: Wavelet sub-band based Deepfake Identi-
fication in Frequency Domain. (a) Traditionally, frequency level
artifacts (like DFT, DCT, FFT, etc.) are generated, which in im-
age format are fed to Convolutional Neural Networks (CNNs) for
feature extraction, and then classification. (b) WaveDIF filters out
high frequency artifacts using a low-pass gaussian filter and uses
DWT to decompose videos into sub-bands LL, LH, HL, and HH.
Further, the energy level values of these sub-bands are used as in-
put features for classification.

tection mechanism to identify such manipulated media.
In recent years, deepfake research has taken into con-

sideration two different domains of operation (primarily)
– the spatial domain [1, 4, 11, 19], which involves pixel-
based manipulations, facial landmarks, and texture synthe-
sis, and the frequency domain [10, 12, 15, 28], which in-
volves signal transformations, frequency artifacts, and in-
consistencies in high and low-frequency details. Addition-
ally, some works [3, 31, 33] have suggested multi-modal
deepfake detection, where features from more than one do-
main are combined and fused to form yet another complex
feature set, based on which the video is classified as original
or deepfake.



Original DEEPFAKE FACE2FACE FACESHIFTER FACESWAP NEURALTEXTURES

Figure 2. A sample video from the FaceForensics++ [25] dataset (first row). Corresponding to the selected sample, five deepfakes –
DEEPFAKES [13], FACE2FACE [29], FACESHIFTER [16], FACESWAP [21], and NEURAL TEXTURES [30] are generated. The second row
shows the Discrete Fourier transformation of the frames. Though difficult to visualize, the DFTs differ from each other considerably; SSIM
(Original, DEEPFAKES) = 0.6028, SSIM (Original, FACE2FACE) = 0.6010, SSIM (Original, FACESHIFTER) = 0.5811, SSIM (Original,
FACESWAP) = 0.5823, SSIM (Original, NEURAL TEXTURES) = 0.5991. The last row shows the difference heatmap where bright red or
yellow areas denotes regions of major modifications, in green or blue are regions of moderate to low modifications.

Traditionally, features from all (or a set of) domains are
feed to deep learning modules which learns domain-specific
artifacts, therefore enabling a classification. While many
works from the recent literature considers spatial domain
for deepfake detection, comparatively fewer contributions
have been made towards deepfake detection strictly per-
taining to the frequency domain. This research presents
WaveDIF, a strict frequency domain, lightweight deepfake
video detection algorithm using wavelet sub-band energies
(LL, LH, HL, and HH are the sub bands). Every deep-
fake detection framework usually works in two phases –
(a) feature extraction, wherein features particular to origi-
nal and deepfake videos are learned, and (b) classification,
wherein based on the learned feature a decision boundary
is laid between deepfake and original videos [6]. Conven-
tional deepfake detection frameworks mostly rely on con-
volutional neural networks (CNNs) for the feature extrac-
tion process, and a fully-connected layer is maintained at
the end for the classification phase. While deep learning-
based feature extraction and classification are often very ac-
curate, most of them usually require strong computational
power for their perusal. In contrast to these traditional deep
learning-based frameworks, in WaveDIF, the feature extrac-
tion phase is based on wavelet sub-band energies extracted
through Discrete Wavelet Transform (DWT), which enables
decomposition of the video frames into different frequency
components while preserving spatial locality. This further
allows us to simultaneously examine both high and low-

frequency artifacts introduced during deepfake synthesis.
Prior to wavelet decomposition, Discrete Fourier Transform
(DFT) for each frame of the input video is performed, which
filters out high frequency artifacts that get added to the
videos during deepfake synthesis.

Fig. 2 shows the result of applying DFT for se-
lected frames of videos from the FaceForensics++
dataset [25]. It also shows the difference heatmap (cor-
responding to original and different deepfake representa-
tions) to elucidate the relevance of of our approach of clas-
sifying deepfakes in the frequency domain. The classifica-
tion phase in WaveDIF relies on the computed (sub-band
- LL, LH, HL, and HH) energy values, based on which
a decision boundary (along with a threshold) is learned
through regression analysis. Classification of new (unseen)
video examples is through the application of these deci-
sion boundary. Fig. 3 shows the DWT sub-bands’ three-
dimensional visualization (for a selected video pair from
FaceForensics++ ,i.e., original and corresponding five
deepfakes, where the x, and y axes represents the spatial
dimensions, and z axis represents the wavelet coefficients’
magnitude. This enables pictorial visualization of the fea-
tures used for classifying the videos, and the marked differ-
ences (with yellow dots) justifies the relevance of wavelet
sub-bands’ energies for the classification.

A common practice with frequency domain deepfake
detection models is to utilize high-frequency artifacts for
the classification. In contrast, in this research high-



frequency details are filtered out, since wavelet decom-
position is a multi-resolution analysis which is very sen-
sitive to noise and high-frequency distortions. In partic-
ular, to get rid of spurious high-frequency noise, Gaussian
low-pass filter was used. Direct utilization of the DWT co-
efficients for classification leads to poor localization in the
frequency domain due to the widespread noise across all
sub-bands.

To evaluate the effectiveness of the proposed WaveDIF
technique, two popular deepfake (video-only) datasets –
FaceForensics++ [25], and CelebDF (v2) [17]
have been considered. The evaluation results shows com-
petitive performance by WaveDIF compared to state-of-
the-art deep learning based deepfake detection frameworks
across all domain, while incurring much lesser com-
putational cost. WaveDIF achieves ≈ 94.93% in-
dataset, and ≈ 88.83% cross-dataset accuracies for
the FaceForensics++ dataset. Similarly, for the
CelebDF (v2) dataset, the metrics are≈ 92.03%, and
≈ 87.01% respectively.

To sum up, the novelties of the proposed WaveDIF
methodology in contrast to existing frameworks are as fol-
lows:
1. Existing deepfake detection techniques mostly rely on

features extracted from the spatial (standalone) or fusion
features from spatial domain with those from other do-
mains like audio, spectra, etc. [3, 19, 31], but WaveDIF
operates strictly on features extracted from the frequency
domain.

2. Existing techniques mostly rely on deep learning-based
feature extraction, making them computationally expen-
sive (hidden layers like attention [8, 14] and convolu-
tion [22, 26] are computationally expensive). In con-
trast, WaveDIF uses Discrete Wavelet Transformation
(DWT) to decompose video frames into LL, LH, HL,
HH sub-bands, and then to their respective energies
ELL, ELH, EHL, and EHH, which makes the feature extrac-
tion stage lightweight.

3. Existing techniques mostly rely on fully-connected lay-
ers for classification [5, 23], which have hereby been re-
placed by linear and logistic regression to model an inter-
pretable decision boundary with a threshold. This makes
the classification both lightweight and interpretable.
The rest of the manuscript is organized as follows –

Section 2 presents related works on deepfake detection
(across the two primary domains – spatial, and frequency).
Section 3 explains in detail the proposed methodology -
WaveDIF. Section 4 is directed towards evaluating the pro-
posed methodology, experimenting with deepfake datasets,
comparing the performance of WaveDIF with respect to the
state-of-the-art detection frameworks. Finally, the paper
concludes with comments about direction of future work in
Section 5.

2. Related Works
The domain of deepfake detection has evolved into a mul-
tifaceted area of research. This section discusses research
on deepfake forensics from the recent past across spatial
and frequency domain. Spatial domain methods analyze
pixel-level inconsistencies, frequency domain methods ana-
lyze artifacts in spectral features (like DCT/DFT/FFT, etc.)
While spatial domain (sometimes also fused with other do-
mains like auditory domain [3, 31, 33]) are dominant meth-
ods for detection, frequency-based approaches are gaining
prominence due to their lightweight feature extraction pro-
cess, and invariance to adversarial shifts.

2.1. Spatial Domain Approaches
Spatial methods primarily rely on Convolutional Neural
Networks (CNNs) and Transformer-based architectures to
capture features specific to deepfakes, and using those fea-
tures to classify between real and synthetic videos (mainly
done using fully-connected layers). The features include
pixel-level manipulations, facial landmark distortions, and
texture inconsistencies introduced in the synthetic videos
generated using Generative Adversarial Networks (GANs).
Naskar et al. [19] proposed a spatial domain deep-
fake detection approach using deep feature stacking and
meta-learning integrating features extracted by XCEPTION
and EFFICIENTNET-B7 through a stacking-based ensemble
framework. The extracted features are further selected us-
ing a multi-layer perceptron meta-learner for classification.
Agarwal et al. [1] proposed a multi-domain cross-stitched
network for deepfake detection –MD-CSDNETWORK. It
combined spatial and frequency domain features to improve
generalization. The model has two parallel branches – for
processing spatial information and frequency-domain ar-
tifacts present in fake videos. Das et al. [4] proposed
a masked autoencoding spatiotemporal transformer-based
deepfake detection method using self-supervised learning.
The model combined two VISION TRANSFORMERS – Spa-
tial Transformer that learns frame-level visual features from
individual RGB frames, and Temporal Transformer for
learning motion inconsistencies (by analysing optical flow
fields). He et al. [11] proposed GAZEFORENSICS, that
uses gaze-guided spatial inconsistency learning (e.g. un-
natural eye movements) for improving deepfake detection
accuracy. They used 3D gaze estimation network to extract
gaze representations, which are then used for classification
by integrating consistency between real and fake gaze pat-
terns.

2.2. Frequency Domain Approaches
Frequency domain analysis based methods analyze the
spectral properties of the videos, capturing frequency arti-
facts that generative models unintentionally introduce (due
to inconsistencies in texture synthesis). The features gener-
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Figure 3. Motivation for using wavelet sub-bands (and their energies) as a distinguishable feature between real and deepfake video. The
first row corresponds to energy sub-band visualization (in 3D) for a real video, while the second row corresponds to visualization (in 3D)
for a synthetically prepared video. Note that in the visualizations of the second row, yellow dots represent coefficients with difference in
magnitude.

ally include Discrete Fourier Transformation (DFT), Dis-
crete Cosine Transformation (DCT), Fast Fourier Trans-
form (FFT), etc. Tan et al. [28] proposed FREQNET,
a frequency-aware deepfake detection framework designed
for better generalization across different deepfake genera-
tion models. While traditional methods detect artifacts in-
troduced during the up-sampling process in GAN pipelines,
FREQNET uses frequency domain learning by applying
convolutional layers to the phase and amplitude spectra
between Fast Fourier Transform (FFT) and Inverse FFT
(iFFT). Kohli and Gupta [15] proposed a frequency-based
convolutional neural network (fCNN) for detecting DEEP-
FAKE, FACESWAP, and FACE2FACE facial forgeries (par-
ticular to as seen in FaceForensics++ dataset). They
convert the facial images from each of these classes to their
respective frequency domain using two-dimensional Global
Discrete Cosine Transforms (2D-GDCT), which are then
processed using a three-layer Frequency CNN (fCNN) to
learn and therefore classify between real and fake faces.
Hasanaath et al. [10] introduced Frequency-Enhanced Self-
Blended Images (FSBI) that integrates self-blended images,
and frequency-domain analysis. For conversion to fre-
quency domain, Discrete Wavelet Transform (DWT) was
used on the self-blended images, which are then used to ex-
tract features from, by using convolutional neural network
(standard for frequency-based feature extraction). Jeong et
al. [12] proposed FREPGAN using frequency-level per-
turbation maps. The training process in FREPGAN is di-
vided into two phases – Early Training (which identifies

frequency-level artifacts), and Later Training (which iden-
tifies higher-level inconsistencies).

3. Proposed Methodology: WaveDIF
This section presents WaveDIF (Wavelet sub-band based
Deepfake Identification in Frequency Domain), the pro-
posed methodology for deepfake detection in this research.
Since WaveDIF takes the wavelet sub-band energies as fea-
ture input to the model, the model operates strictly in the
frequency domain. WaveDIF captures the subtle frequency
artifacts that are introduced in videos (especially in their
spectral domain) during artificial synthesis, and classifies
the videos accordingly.

Given an input video (say v ∈ RH×W×3×F ), the ob-
jective is to classify whether the video is synthetically gen-
erated or original; where, H ×W is the spatial resolution
of the video, the factor three denotes three-channel RGB
representation, and F corresponds to the frame count of
the video. The proposed WaveDIF model is a two-stage-
pipeline – (i) feature extraction, which captures the fre-
quency domain abnormalities, and (ii) classification based
on the extracted features, to train a deterministic model
which can classify between real and deepfake videos. Ad-
ditionally, the feature extraction phase is further subdi-
vided into two parts – (a) DFT-based frequency filtration,
which enhances the discriminative abnormalities (patterns)
by suppressing noise and (b) DWT-based feature extrac-
tion, which extracts localized frequency variations, based
on wavelet sub-band energies. Note that prior to passing



Figure 4. Architectural Overview of the WaveDIF Deepfake Detection Technique. Given a video input V ∈ RH×W×3×F , each frame
of size (H × W ) undergoes a Discrete Fourier Transform (DFT) to filter out high-frequency noise artifacts. The DFTs of all frames are
averaged to generate a final DFT representation of the input video V . This representation is then decomposed into wavelet sub-bands (LL,
LH, HL, HH) using a Haar filter. Further, the energy values ELL, ELH, EHL, and EHH are computed corresponding to each video. At the
end of the feature extraction process (iff phase == TRAINING), a linear decision boundary-based equation is modelled (using linear, and
logistic regression). Models pertaining to the correct size of a boundary are classified therefore.

any input video to the feature extraction phase, it is con-
verted to grayscale (single-channel), and to maintain uni-
formity across all videos, they are resized to a fixed preset
resolution.

3.1. Feature Extraction
In the first stage of the WaveDIF pipeline, initially every
input video v is decomposed into the constituent frames,
{f1, f2, . . . , fF }. Following the decomposition, each frame
fi is first transformed into their frequency domain using the
2D Discrete Fourier Transform (DFT), following Eqn. (1):

Fi(u, v) =

H−1∑
x=0

W−1∑
y=0

fi(x, y)e
−j2π(ux

H + vy
W ) (1)

where (x, y), and (u, v) are the coordinates in spatial and
spectral domain respectively. As mentioned previously,
deepfakes often introduce high frequency artifacts which
are irrelevant for frequency-based classification [7]. To fil-
ter out these noisy artifacts, Gaussian Low-Pass Filtering

(GLPF) [32] has been used (as per Eqn. (2)) to suppress
the high-frequency components, while preserving discrim-
inative patterns in lower frequencies, which was the recon-
structed using Inverse DFT (as per Eqn. (3)):

F ′
i(u, v) = Fi(u, v) · e−

(u2+v2)

2σ2 (2)

f ′i(x, y) =

H−1∑
u=0

W−1∑
v=0

F ′
i(u, v)e

j2π(ux
H + vy

W ) (3)

where σ is the cutoff-frequency. In this work, we set σ =
45.

To obtain a global spectral representation of the video
(v), mean aggregated representation across all frames is

computed as, R =
1

F

F∑
i=1

f ′i . Since, DFT captures global

frequency information, but lacks spatial localization, DWT
using Haar wavelet filter was applied on the aggregated
frame R [27], which decomposed R into four frequency
sub-bands:



Algorithm 1 WaveDIF

Require: Labeled dataset {V, ℓ}, and test video V /∈ V
Ensure: Predicted label, l ∈ {ORIGINAL,DEEPFAKE}

1: function FEATUREEXTRACTION (v)
2: {f1, f2, . . . , fF } ← EXTRACTFRAMES (v)
3: for each frame fi do
4: Fi ← DISCRETEFOURIERTRANSFORM (fi)
5: F ′

i ← GAUSSIANLPF(Fi)
6: f ′i ← INVERSEDFT (F ′

i)
7: end for

8: R ← 1

F

F∑
i=1

f ′i ▷ Averaged (for all filtered frames)

9:

[
LL LH
HL HH

]
← DISCRETEWAVELETTRANS-

FORM(R)
10: Compute ES =

∑
j∈S
S2j , ∀S ∈ {LL,LH,HL,HH}

11: Fv ← [ELL, ELH, EHL, EHH] ▷ Feature vector (for v)
12: end function
13: if phase == TRAINING then ▷ Training Phase
14: for each video v in V do
15: Fv ← FEATUREEXTRACTION (v)
16: FV ← FV ⊕ Fv ▷ Feature fusion
17: end for
18: Learn the model parameters (Linear Regression)

B(FV) = θ1 · ELL + θ2 · ELH + θ3 · EHL + θ4 · EHH + β

19: Learn the threshold T (Logistic Regression)
20: else ▷ Inference Phase
21: FV ← FEATUREEXTRACTION (V)
22: {ΘT, β} ← B(FV)
23: f(FV)← ΘTFV + β
24: if f(FV) ≥ T then
25: l← ORIGINAL
26: else
27: l← DEEPFAKE
28: end if
29: return l
30: end if

1. LL (Low-Low), which captures low-frequency struc-
tures.

2. LH (Low-High), which captures horizontal high-
frequency details.

3. LH (High-Low), which captures vertical high-frequency
details.

4. HH (High-High), which captures diagonal high-
frequency details.

For the Haar wavelet transform, low-pass filters(
ϕ =

1√
2
[1, 1]

)
, and high pass filters

(
ψ =

1√
2
[1,−1]

)

are applied separately along rows and columns of the ma-
trix R. The ’ respective sub-bands are computed as per
Eqn. (4):

LL(m,n) =
1

4

1∑
i=0

1∑
j=0

R(2m+ i, 2n+ j)

LH(m,n) =
1

4

1∑
i=0

1∑
j=0

(−1)jR(2m+ i, 2n+ j)

HL(m,n) =
1

4

1∑
i=0

1∑
j=0

(−1)iR(2m+ i, 2n+ j)

HH(m,n) =
1

4

1∑
i=0

1∑
j=0

(−1)i+jR(2m+ i, 2n+ j)

(4)

where, (m,n) are the coordinates of transformed domain.
Each sub-band captures some specific frequency re-

sponse, notably the deepfake videos captures some unnat-
ural energy distributions in these sub-bands, which serves
as the basis of classification in this research. The energy
corresponding to each of these bands were computed fol-
lowing Eqn. (5):

ES =
∑
m

∑
n

S2(m,n), ∀S ∈ {LL,LH,HL,HH} (5)

or in simpler terms, ES =
∑
j∈S
S2j , ∀S ∈ {LL,LH,HL,HH}

Thus, the feature vector corresponding to the input video v
is Fv = [ELL, ELH, EHL, EHH].

The feature extraction stage of the WaveDIF pipeline is
common to both training and inference phases. In the train-
ing phase, the labeled dataset {V, ℓ} is fed for the feature
extraction, and based on the features, a deterministic lin-
ear boundary equation is trained where V is a vector of
videos, and ℓ is the vector of labels corresponding to ev-
ery video in V. In the inference phase, an unseen video
V /∈ V is taken as input, its features extracted, is passed
through the learned boundary equation to predict a label
l ∈ {ORIGINAL,DEEPFAKE}.

3.2. Classification based on the extracted features
In the second stage of the WaveDIF pipeline, the learned
features are used for training a deterministic model (if phase
== TRAINING), and the trained deterministic model is
used for giving a verdict for any input video (if phase ==
INFERENCE). During training, features corresponding to
each video v in the labeled dataset V are learned, and fused
together to form the model feature vector as in Eqn. (6):

FV =
⊕
v∈V

Fv, Fv = [ELL, ELH, EHL, EHH] (6)



Next, the model feature vector, and the associated labels
(FV, ℓ) are used for training a uni-dimensional regression
model, i.e., using (FV, ℓ) to learn the model weights and
biases as per Eqn. (7):

B(FV) = θ1 · ELL + θ2 · ELH + θ3 · EHL + θ4 · EHH + β (7)

Further, using the same set of features and labels, a logis-
tic regression model was trained to obtain a threshold (T ).
Thus, the trained model (inclusive of threshold) is as per
Eqn. (8):

l =

{
ORIGINAL, if ΘTFV + β ≥ T
DEEPFAKE, otherwise.

(8)

In the inference phase, for an unseen video V /∈ V, the
trained model (Eqn. (8)) is used. Fig. 4 gives a pictorial
illustration of WaveDIF, and Algorithm 1 summarizes the
workflow.

4. Experimental Results
This section discusses the experimental details, and the re-
sults obtained by comparing the proposed WaveDIF model
with state-of-the-art deepfake detection techniques.

4.1. Dataset
To evaluate the performance of WaveDIF, it was tested
on the FaceForensics++ [25], and CelebDF (v2)
[17] dataset. FaceForensics++ consists of 1000 real
and corresponding 5000 synthetic videos (from five differ-
ent deepfake generational models). The reason behind the
choice of FaceForensics++ is the presence of synthetic
videos from multiple techniques such as FACE2FACE [29],
FACESWAP [21], NEURAL TEXTURES [30], etc. CelebDF
(v2) consists of 590 real and 5639 synthetic videos of
celebrities in various lighting conditions, angles, and ex-
pressions. The reason behind the choice of CelebDF
(v2) is the specific designing paradigm of the dataset,
which reduce visual artifacts (in both spatial, and spectral
domain) commonly found in synthetic videos, thus makes
the deepfakes look much more realistic and therefore chal-
lenging to detect [17]. Additionally, since the objective of
this research is to detect deepfakes strictly from artifacts in
frequency domain, videos (with no audio) were chosen as
is the property of each video in FaceForensics++, and
CelebDF (v2) dataset.

Fig. 5 shows t-distributed Stochastic Neighbor Em-
bedding (t-SNE) representation (as suggested by Naskar
et al. [19]) of the four-dimensional feature vec-
tors Fv = [ELL, ELH, EHL, EHH] for original and deep-
fake videos from FaceForensics++, and CelebDF
(v2). It can be interpreted from the visualization that
FaceForensics++ have well separated clusters, thus

Deepfake
Original

Deepfake
Original

Figure 5. t-SNE visualization (corresponding to wavelet sub-
bands’ energies, as features) for both the deepfake datasets -
FaceForensics++ (left sub-figure), and CelebDF (v2)
(right sub-figure)

.

classification will be more accurate than CelebDF (v2)
where there are few overlapping clusters. Note that, these
features are log-transformed (refer to Subsection 4.2 for the
reason)

4.2. Experimental Setup
The WaveDIF model was trained and evaluated on these
datasets using an 80-20 train-test split. Prior to extraction of
frequency domain feature from the videos, for each frame
three channels of input spectra (RGB) were converted to a
single channel (Grayscale), and since videos (in real time)
can vary in spatial resolution, the videos were resized to
224 × 224 × F (F is the frame count). Further, since in
the classification phase, input to the regression models are
sub-band energy values, which are of order 108−109, feed-
ing them directly to the model might lead to numerical in-
stability (like arithmetic overflow or precision errors). To
get rid of that, a log-transformation log-transform (z) =
log (1 + z) was applied. Note that logarithmic transfor-
mation works only for features having values ≥ 0. Since
energy values are computed as sum of squared terms (re-
fer to Eqn. (5)), the features in Fv = [ELL, ELH, EHL, EHH]
will be ≥ 0; thus, logarithmic transformation is ap-
plicable. All experiments were carried out on a sys-
tem with 16 GiB main memory, Intel(R) Core(TM)
i7-1065G7 @1.30 GHz processor and an NVIDIA
GeForce MX330 Graphics Processing Unit with 2 GiB
in-built memory.

4.3. Evaluation Results
The accuracy of WaveDIF was compared against a number
of state-of-the-art models that work both in the frequency
and spatial domains (refer to Section 2). Further, to test
the generalizability of the proposed model, it was evalu-
ated both in-dataset and cross-dataset, and their respective
accuracies were noted. One advantage of classifying be-
tween deepfakes and original videos in the frequency do-
main is the lightweight model requirements, but because



Table 1. Comparison of performance between different models operating in spatial and spectral domains for the FaceForensics++
data.

Basis Metrics
Classification on Spatial Features Classification on Frequency Features

Proposed
Naskar et al. [19] Agarwal et al. [1] Das et al. [4] He et al. [11] Tan et al. [28] Kohli et al. [15] Jeong et al. [12] Hasanaath et al. [10]

In-Dataset
Classification

Accuracy 0.9701 0.9762 0.9905 0.9850 0.9350 0.9075 0.9471 0.9434 0.9493
Precision 0.9719 0.9755 0.9884 0.9824 0.9280 0.9048 0.9447 0.9431 0.9487

Recall 0.9702 0.9760 0.9891 0.9831 0.9311 0.9061 0.9453 0.9515 0.9502
F1-Score 0.9706 0.9755 0.9885 0.9794 0.9295 0.9055 0.9440 0.9392 0.9495

Complexity O
(
n · d2 · T

)
O
(
n · d · L2 · T

)
O
(
n · L · h2 + L · a · h2

)
O
(
n · d · k2 · T

)
O (n · d · f · T ) O

(
n · d · k2 · T

)
O
(
n · d · f2 · k2 · T

)
O (n · d · f · L · T ) O (n · d log d · f)

Cross-Dataset
Classification

Accuracy 0.9401 0.9232 0.9615 0.9457 0.8816 0.8640 0.8745 0.8879 0.8883
Precision 0.9354 0.9206 0.9579 0.9418 0.8782 0.8613 0.8720 0.8848 0.8876

Recall 0.9387 0.9216 0.9594 0.9421 0.8758 0.8589 0.8689 0.8810 0.8875
F1-Score 0.9365 0.9208 0.9585 0.9414 0.8741 0.8595 0.8669 0.8826 0.8876

Complexity O
(
n∗ · d2 · T

)
O
(
n∗ · d · L2 · T

)
O
(
n∗ · L · h2 + L · a · h2

)
O
(
n∗ · d · k2 · T

)
O (n∗ · d · f · T ) O

(
n∗ · d · k2 · T

)
O
(
n∗ · d · f2 · k2 · T

)
O (n∗ · d · f · L · T ) O (n∗ · d log d · f)

Table 2. Comparison of performance between different models operating in spatial and spectral domains for the CelebDF (v2) data.

Basis Metrics
Classification on Spatial Features Classification on Frequency Features

Proposed
Naskar et al. [19] Agarwal et al. [1] Das et al. [4] He et al. [11] Tan et al. [28] Kohli et al. [15] Jeong et al. [12] Hasanaath et al. [10]

In-Dataset
Classification

Accuracy 0.9402 0.9644 0.9759 0.9704 0.9017 0.8808 0.9089 0.8950 0.9203
Precision 0.9364 0.9598 0.9722 0.9683 0.8994 0.8780 0.9072 0.8916 0.9196

Recall 0.9396 0.9620 0.9748 0.9694 0.9009 0.8788 0.9101 0.8937 0.9201
F1-Score 0.9564 0.9609 0.9737 0.9685 0.8992 0.8785 0.9077 0.8925 0.9193

Complexity O
(
n · d2 · T

)
O
(
n · d · L2 · T

)
O
(
n · L · h2 + L · a · h2

)
O
(
n · d · k2 · T

)
O (n · d · f · T ) O

(
n · d · k2 · T

)
O
(
n · d · f2 · k2 · T

)
O (n · d · f · L · T ) O (n · d log d · f)

Cross-Dataset
Classification

Accuracy 0.9256 0.9138 0.9557 0.9371 0.8412 0.8174 0.8505 0.8330 0.8701
Precision 0.9182 0.9100 0.9500 0.9314 0.8383 0.8144 0.8448 0.8294 0.8692

Recall 0.9201 0.9124 0.9521 0.9338 0.8350 0.8126 0.8435 0.8257 0.8695
F1-Score 0.9194 0.9115 0.9511 0.9335 0.8346 0.8118 0.8415 0.8243 0.8694

Complexity O
(
n∗ · d2 · T

)
O
(
n∗ · d · L2 · T

)
O
(
n∗ · L · h2 + L · a · h2

)
O
(
n∗ · d · k2 · T

)
O (n∗ · d · f · T ) O

(
n∗ · d · k2 · T

)
O
(
n∗ · d · f2 · k2 · T

)
O (n∗ · d · f · L · T ) O (n∗ · d log d · f)

Table 3. Ablation Study: Impact of DFT Filtering and Sub-band
Energy Components on WaveDIF’s Accuracy

Model Variant
DFT

Filtering
ELL ELH EHL EHH

Validation Accuracy
FF++ [25] CDF2 [17]

WaveDIF ✓ ✓ ✓ ✓ ✓ 0.9493 0.9203
w/o DFT Filtering X ✓ ✓ ✓ ✓ 0.8041 0.8049

w/o ELL ✓ X ✓ ✓ ✓ 0.8333 0.8251
w/o ELH ✓ ✓ X ✓ ✓ 0.8402 0.8390
w/o EHL ✓ ✓ ✓ X ✓ 0.8411 0.8406
w/o EHH ✓ ✓ ✓ ✓ X 0.8531 0.8459

of less complex model artifacts, it trades off the accuracy
(though negligibly).

The evaluation results of WaveDIF on the
FaceForensics++ and CelebDF (v2) datasets
have been presented in Table 1, and 2 respectively. In
each table, methods are compared based on achieved
accuracy, precision, recall, and F1-score. Additionally,
the complexities of the methods have been reported in
terms of number of in-dataset samples (n), number of
cross-dataset samples (n∗), feature dimension (d), number
of epochs (T ), number of layers (L), transformers’ hidden
dimension (h), convolutional networks’ kernel size (k),
transformers’ attention heads (a), and frequency domain
transformation complexity (O (f)). The WaveDIF pipeline
(training) takes n or n∗ data points, and each of them are
converted to frequency domain in O (f) time. Wavelet
decomposition of the filtered videos is done with d × log d
complexity (due to divide-and-conquer approach of Haar
filters). Thus, overall, the proposed model’s complexity is
O (n · d log d · f).

As observed through experiments (Table 1, and 2) – the
proposed WaveDIF model outperforms state-of-the-art
deepfake detection models (operating in frequency do-
main) for both in-dataset, and cross-dataset basis of test-
ing by 0.7433%, and 1.1748% respectively. Table 3 gives
an ablation analysis of each component in the WaveDIF
model with respect to both the datasets. Table 3 related
to ablation study reveals that DFT filtering and all sub-
band energy components (ELL, ELH, EHL, EHH) contribute
to WaveDIF’s accuracy. Removing DFT filtering from
the pipeline significantly lowers accuracy (by ≈ 15.31%),
while excluding any sub-band component also reduces per-
formance, with ELL having the largest impact (≈ 12.23%).

5. Conclusion
This work introduced WaveDIF, which uses wavelet sub-
band energies for the detection of deepfake videos. Unlike
traditional methods that use deep learning for feature ex-
traction, WaveDIF has a lightweight but efficient pipeline
that uses DFT for high-frequency noise dropout, followed
by DWT to extract sub-band energies as distinguishing
features. WaveDIF outperforms existing frequency do-
main deepfake detection techniques, though like any other
frequency-based approach, WaveDIF falls short of its’ accu-
racy compared to spatial domain methods. But, in contrast
to the exponentially high count of model parameters needed
to be trained for multi-modal methods, WaveDIF have sig-
nificantly lesser number of parameters, which also gets re-
flected in its’ lightweight model complexity. Future works
can be conducted on the integration of temporal dynamics
and adaptive thresholding to achieve generalizability.
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