
CLIPDraw++: Text-to-Sketch Synthesis with Simple Primitives

Nityanand Mathur1,∗, Shyam Marjit2,∗, Abhra Chaudhuri3,4, and Anjan Dutta4
1 Smallest AI, 2 IIIT Guwahati, 3 University of Exeter, 4 University of Surrey

1nityanand@smallest.ai, 2shyam.marjit@iiitg.ac.in, 3ac1151@exeter.ac.uk,
4anjan.dutta@surrey.ac.uk

Table of Contents
1 . Implementation Details 1

1.1. Initialization details 1
1.2. Augmentation details 2
1.3. Optimization details 2

2 . Sketch Generation from Primitives 2

3 . CLIPDraw++ Ablation Study 4
3.1. Impact of Primitive-level Dropout 4
3.2. Sketching with Diminished Opacity . . . 9
3.3. Patch-based Initialization 9
3.4. Analysis of Patch Size 11
3.5. Effect of primitives count within a patch . 11
3.6. Loss Ablation and Analysis 11
3.7. Variations 13
3.8. Advantage of Primitives over Bézier Curves13

4 . Limitations 13

1. Implementation Details
In this section, we provide detailed information on how we
have implemented our method. The implementation is car-
ried out using PyTorch [3] and makes use of the differen-
tiable rasterizer framework diffvg [2].

1.1. Initialization details
“What is the procedure to initialize the first canvas?” –
to answer this question can be given in the following three
steps: ❶ We first extract the crucial salient regions of the
canvas by incorporating diffusion attentive attribution maps
(DAAM) [5], leveraging the pre-trained Latent Diffusion
model [4]. DAAM upscale and aggregate cross-attention
word–pixel scores in the denoising subnetwork. For more
details please refer to [5]. ❷ From the DAAM-generated
final attention map, we sample k positions. Here we have
considered the value of k to be 32. Thereafter, we fol-
low patch-wise initialization as described within Sec. 3.2

*Equal contribution.

in the main paper. Here, we divide the whole canvas into
32 × 32 patches and select only patches where any of k
points lie within, we do not initialize the primitives within
these patches where there are no points belonging to them.
A patch is denoted by Pi,j , where i and j represent the row
and column, respectively. Here, ∀(x, y) ∈ Pi,j lies within
(xs

i,j , y
s
i,j), and (xe

i,j , y
e
i,j) where s denotes the top-left/start

point and e denotes bottom-right/end point. A point, (x, y)
belongs to patch Pi′,j′ where (i′, j′) = ([x/32] , [y/32]). ❸
After choosing which patches to initialize the primitives,
we randomly place exactly 3 primitives, (one from each
type, straight line, circle, and semi-circle) within selected
patches. Our primitives are based on the SVG (Scalable
Vector Graphics) path but constrained to certain geometric
shapes, described as follows:
• Line: A line can be represented by two control points,
l1(x1, y1) and l2(x2, y2). To initialize a line, L : (l1, l2)
at the desired patch, Pi,j we follow:

x1 = random.randint(xs
i,j , x

e
i,j)

y1 = random.randint(ysi,j , y
e
i,j)

x2 = random.randint(xs
i,j , x

e
i,j)

y2 = random.randint(ysi,j , y
e
i,j)

The length of line L =
√

(x2 − x1)2 + (y2 − y1)2.
• Circle: A circle, C within a patch Pi,j is represented by

it’s centre c (xc, yc), and the radius r where

xc = random.randint(xs
i,j , x

e
i,j)

yc = random.randint(ysi,j , y
e
i,j)

r = random.randint(1, rmax).

Here rmax is the maximum size of the radius so that the
circle should remain within the patch, Pi,j which is de-
fined in the below pseudo-code:

1 # randomly initialize (x_c, y_c)
2 max_radius_x = patch_size/2
3 max_radius_y = patch_size/2
4 if x_c < start_x + patch_size/2:
5 max_radius_x = x_c - start_x

1

6 else:
7 max_radius_x = end_x - x_c
8 if y_c < start_y + patch_size/2:
9 max_radius_y = y_c - start_y

10 else:
11 max_radius_y = end_y - y_c
12 max_radius = min(max_radius_x, max_radius_y)

where patch size = 32; (x c, y c) is the center of the cir-
cle; and (start x, start y) =

(
xs
i,j , y

s
i,j

)
and (end x, end y)

=
(
xe
i,j , y

e
i,j

)
.

• Semi-circle: For the semi-circle, the mathematical expla-
nation remains the same as the circle, the only change that
occurs is in the SVG path and these can be approximated
using a cubic Bezier curve.
The SVG path of these primitive types to incorporate

diffvg library is given as:

1 import pydiffvg # diffvg library
2 # SVG line path
3 line_path = pydiffvg.from_svg_path(f’M {x1},{y1}

L {x2},{y2}’)
4 # SVG circle path
5 circle_path = pydiffvg.from_svg_path(f’M {x_c - r

},{y_c} a {r},{r} 0 1,1 {r*2},0 a {r},{r} 0
1,1 {-1*r*2},0’)

6 # SVG semi-circle path
7 semi_circle_path = pydiffvg.from_svg_path(’M {x_c

- r},{y_c} a {r},{r} 0 1,1 {r*2},0’)

This way we initialize the first sketch canvas using a set
of simple geometric primitives before the optimization pro-
cess begins.

1.2. Augmentation details
The primary aim of image augmentation is to pre-
serve recognizability in the presence of various dis-
tortions. Following the implementation of CLIP-
Draw [1], we utilize a series of transformation functions,
namely torch.transforms.RandomPerspective
and torch.transforms.RandomResizedCrop, on
both the given image and generated sketch before passing
them as inputs to the CLIP model for loss computation. In
this context, the total number of augmentations, denoted as
N , is set to 4. The incorporation of these augmentations
serves to enhance the robustness of the optimization pro-
cess against adversarial samples and contributes to an over-
all improvement in the quality of the generated sketch.

1.3. Optimization details
Our optimization loop includes the following three steps –
1) generating a sketch from vectorized primitives, 2) apply-
ing primitive-level dropout (PLD), and 3) computing loss
function and back-propagate it to SVG parameters within
diffvg. CLIPDraw++ optimization does not operate on
width and color optimization, we keep them constant for the
task of the sketch-synthesize. The optimization process typ-
ically takes around 2 min to run 1000 iterations on a single

RTX 3090 GPU. Nevertheless, we attain a thorough grasp
of the semantic and visual aspects of the provided textual
prompt within 500 epochs. Yet, for the purpose of refining
it and enhancing noise removal, we continue the process for
an additional 500 iterations as shown in Fig. 1. We employ
the Adam optimizer along with the learning rate scheduler
outlined in the following pseudo-code:

1 for t in range(num_iter):
2 ...
3 if t == int(num_iter * 0.5):
4 lr = 0.4
5 if t == int(num_iter * 0.75):
6 lr = 0.1
7 ...

Here, num iter is the maximum number of optimiza-
tion loops, we set it as 1000; lr is the learning rate, and we
initially set it as 1.0.

The words highlighted in yellow are used to gener-
ate the attention maps leveraging DAAM.

2. Sketch Generation from Primitives
As delineated in Sec. 3.1 and Sec. 4.1 of the main paper,
our sketches are composed of linearly transformed primi-
tives such as straight lines, circles, and semi-circles. These
individual strokes can be tracked through their evolution in
successive iterations of the optimization process. In this
context, we present the visualization of sketch generation
with the primitive level tracking in Fig. 1 and overall sketch
level tracking in Figs. 2, 3, 4, and 5 after each 100 iterations,
contextualized by diverse text prompts.

In the illustrative portrayal of “Floating musical notes
from a piano” (refer to Fig. 1a), the composition employs
straight lines for the base structure, and a combination of
circles and semi-circles for floating musical notes. Anal-
ogously, in the depiction of “Faucet” (refer to Fig. 1d),
straight lines define the wash basin, while the faucet’s spout
predominantly assumes a circular form, with its juncture
to the basin evolving gracefully from semi-circular ele-
ments. Turning attention to the “Supermarket” scene (refer
to Fig. 1e), straight lines form simple structures like shelves,
contrasting with circles and semi-circles that compose more
intricate elements such as displayed items.

Moreover, we present comprehensive results of sketch
synthesis and their traceable versions for various input text
prompts in Figs. 2 to 5.

(a) Floating musical notes from a piano .

(b) A peaceful afternoon at the farm sketch.

(c) Fast food with soft drinks.

(d) A sleek faucet centered in a bathroom.

(e) Local supermarket showcasing products.

Figure 1. CLIPDraw++ illustrates the shape evolution of each primitive type in optimization: first row - black-and-white synthesized
sketch, next three rows - circles, straight lines, and semi-circles, final row - combined compositions.

3. CLIPDraw++ Ablation Study

In this section, we showcase more examples to expound
upon comprehensive ablation studies carried out on the dif-
ferent components of our CLIPDraw++ model.

3.1. Impact of Primitive-level Dropout

A thorough and intuitive mathematical explanation of
Primitive-level Dropout (PLD) can be found in Sec. 3.3
of the main paper. Within this section, we demonstrate the
robust effectiveness of PLD by presenting additional exam-
ples with varying dropout probabilities: 0 (without PLD),

0.05, and 0.1. Our findings indicate that a dropout proba-
bility of 0.05 yields sketches that are visually and semanti-
cally more complete and coherent compared to those with-
out PLD and with a higher dropout probability, such as 0.1.

To illustrate, when using prompts such as “A whimsical
journey of a pig with a big nose and small legs” and “A
ptarmigan’s dance in the sky”, we obtain a good finishing
of pig’s face and ptarmigan, respectively at a dropout prob-
ability of 0.05. As depicted in Fig. 6, sketches synthesized
with a PLD of 0.05 generally exhibit cleanliness and real-
ism, while those without PLD (top row) appear noisy and
with a PLD of 1.0 occasionally exhibit incomplete struc-

(a) A sketch of a house in the woods.

(b) A caravan adventure life.

(c) A sideboard amidst the room’s rhythm.

(d) Taste and aroma of fedelini .

(e) Sketch of eggs laying down a nest .

(f) A solid stone .

Figure 2. Visualizations of synthesized sketches and its traceable version w.r.t. varying optimization iterations.

(a) Peaks of a mountain range.

(b) A sketch of the mysterious octopus .

(c) An unique anteater .

(d) The art of balance scale.

(e) A college building surrounded by greenery.

(f) A sketch of grapes on the vine.

Figure 3. Visualizations of synthesized sketches and its traceable version w.r.t. varying optimization iterations (continued to Fig. 2).

(a) A sketch of a simple basket .

(b) A parrot’s solitude amidst nature.

(c) Intense gaze of a chimpanzee .

(d) A classroom filled with students.

(e) The symphony of an accordion .

(f) A stroll through the park archway .

Figure 4. Visualizations of synthesized sketches and its traceable version w.r.t. varying optimization iterations (continued to Fig. 2).

(a) Bees hovering around.

(b) A journey through the gallery of museum .

(c) A sketch of furious storm .

(d) A glimpse into the basement .

(e) A cactus in a dry desert.

(f) Armenian aura on a canvas of abstract impression.

Figure 5. Visualizations of synthesized sketches and its traceable version w.r.t. varying optimization iterations (continued to Fig. 2).

"A whimsical journey
 of a pig with a big

nose and small legs"
"

"A ptarmigan’s
dance in the sky"

"Floating musical notes
from a piano"

"A cozy corner
in the kitchen"

0.0

0.1

0.05

"Sketch of eggs
laying down a nest"

"A caravan
adventure life"

Figure 6. Effectiveness of primitive-level dropout (PLD) across various text prompts with top-row sketches generated without dropout,
middle-row sketches with a 0.05 dropout probability, and bottom-row sketches with a 0.1 dropout probability.

ture in certain cases. This observation is also evident in
“Floating musical notes from a piano” and “A snug nook
in the kitchen” example where the structural completeness
of the piano and the cozy kitchen corner are obtained with a
PLD of 0.05. In the case of instances such as “eggnog” and
“caravan” a PLD of 0.05 shows satisfactory outcomes but
a PLD of 0.1 produces more promising results, highlighting
the reliance of dropout probability on text prompts.

3.2. Sketching with Diminished Opacity

We start with highly transparent strokes (low opacity or a
low α value) and gradually increase the opacity of only the
essential strokes needed to convey the text prompt’s seman-
tics. In addition to primitive-level dropout, this approach
further minimizes the presence of superfluous strokes in the
synthesized sketches. As shown in Fig. 8, the final sketches
which were initialized with lower α values are less noisy
compared to the ones that are initialized with higher α. By
mimicking human drawing behaviour in this way, our ap-
proach demonstrates the potential to yield sketches that are
more precise and finely crafted than those produced by con-
ventional methods.

In Fig. 7, we present additional results demonstrating
the impact of initiating sketching with diminished opacity,
showcasing its influence on various text prompts. Our find-
ings indicate that initiating primitives with α value 0.3 gives

the best semantically aligned and clearer results across all
prompts, values lower than this threshold compromise se-
mantic integrity, while values higher than this threshold lead
to noisy distorted, and altered sketches.

3.3. Patch-based Initialization

In CLIPDraw++, we adopted a patch-based approach for
initializing strokes, placing primitives in patches to cover
areas within a certain range, instead of just at the exact land-
mark points identified on the attention map. This method of
patch-based initialization is designed to prevent the clutter-
ing and messiness often seen with point-based initialization.
As demonstrated in Fig. 7 of main paper, sketches created
through patch-based initialization stand out for their clarity
and prominence. This approach allows for a more effec-
tive capture of the essential semantics of the input, result-
ing in cleaner, more coherent representations. In contrast,
sketches originating from point-based initialization tend to
be muddled and unclear. Allowing primitives to be evenly
distributed up to a certain distance of the attention local
maxima (determined by the patch dimensions) prevents the
model from being overly constrained, and also maintains
clarity in each of the local regions at initialization. This
helps the optimizer have a much clearer view of the can-
vas at the start, which, in turn, lets it retain, evolve, or drop
primitives based on semantic requirements with greater ease

(a) Busy day in a multi-story mall .

(b) A standing motorcycle .

(c) A sketch of the mysterious octopus .

(d) A serene day in the park .

(e) Floating musical notes from a piano .

(f) A whimsical journey of a pig with a big nose and small legs.

(g) Sketch of a sheep at rest.

(h) A sideboard amidst the room’s rhythm.

Figure 7. Effectiveness of initializing primitives with diminished opacity. Initiating primitives with lower α yields cleaner final sketches
compared to higher α. We report optimal α value as 0.3.

Figure 8. Effectiveness of initializing primitives with diminished opacity, indicated by lower α values, is notable. Initiating primitives with
lower α in the prompt “A missile ready for launch” yields cleaner final sketches compared to higher α.

– all of which eventually contribute to much clearer output
sketches.

In Fig. 9, we demonstrate the superiority of our patch-
based initialization compared to random initialization, with
the former adhering to our strategy and the latter to the
CLIPDraw approach for initially setting up canvases. Both
qualitatively and quantitatively, our patch-based method
outperforms the random approach.

0.30 0.34

(a) Random init. (b) Synthesized from (a) (c) Our initialization (d) Synthesized from (c)

Figure 9. Random vs. patch-based (Ours) strokes initialization.

In Fig. 10, we compare our patch-based initialization
against the random initialization of CLIPDraw [1] and CLI-
Passo [6], using an equal number of Bézier curves/primi-
tives for canvas initialization. Our patch-based technique
surpasses the approaches of CLIPDraw and CLIPasso in
both quality and performance, even with the same number
of strokes.

(c) CLIPasso init. (d) Synthesized from (c) (e) Our initialization (f) Synthesized from (e)

0.310.27

(a) CLIPDraw init. (b) Synthesized from (a)

0.28

Figure 10. our patch-based initialization in comparison with
CLIPDraw and CLIPasso based initialization with same number
of strokes (primitives).

3.4. Analysis of Patch Size
The effectiveness of patch-based initialization in compari-
son to point-based initialization is detailed in Sec. 3.2 and
illustrated in Fig. 7 of the main paper. Here, we explore the
influence of different patch sizes during primitive initializa-
tion. For this purpose, we divide a 224 × 224 canvas into
smaller patches, with dimensions of 32 × 32 and 56 × 56.
It is evident from the Fig. 11 that, for the majority of the
prompts, the 32× 32 patch exhibits more visual details and
aligned textual semantics compared to the 56 × 56 patch

size (the highest difference between them is being observed
for prompts “A sketch of a cauliflower“ and “A caravan
adventure life”), with the exception of the “The wise owl’s
gaze” example where the 56× 56 patch size displays more
structural details of the owl.

3.5. Effect of primitives count within a patch
CLIPDraw++ initializes the primitives within selected
patches. In context, it becomes very crucial to study
how many primitives from each type (straight line, circle,
and semi-circle) we need to initialize within the selected
patches. In Fig. 12, we delve into the impact of varying
the number of primitives in each category on the synthe-
sis of sketches using diverse text prompts. Here, our find-
ings unfold as follows – (1) When the primitive count is
low for each type as seen in the first and second rows of
Fig. 12, CLIPDraw++ tends to generate abstract representa-
tions to the provided text prompts. (2) Increasing the prim-
itive counts to around 3 or 4 for each type (third and fourth
rows in Fig. 12) results in more detailed drawings that in-
corporate additional features. (3) However, an increase in
primitive counts beyond a certain threshold, as depicted in
the fifth row of Fig. 12, does not necessarily lead to im-
proved sketch synthesis. Such increments introduce intrica-
cies into the optimization process, making it more complex,
time-consuming, and resource-intensive. Given the fact that
for simpler prompts many of these primitives are superflu-
ous for sketching, which may yield sub-optimal outcomes,
as well.

Keeping the above-mentioned findings in mind, we con-
sider deploying 3 primitives from each type within the des-
ignated patches, which aims to constrain the optimization
process to a suitable image space while utilizing the mini-
mum number of primitives or strokes necessary.

3.6. Loss Ablation and Analysis
Our total loss function, Ltotal is composed of two loss func-
tions, semantic loss: Lsem and visual loss: Lvis, weighted by
their respective coefficients or importance, λsem and λvis.

Ltotal = λsemLsem + λvisLvis

A detailed explanation of the aforementioned loss function
and its components are given in Sec. 3.4 of the primary

"A sketch of
a cauliflower"

"Cloud brooding in
the tempestuous sky"

"A cherry-topped
cupcake"

"The euphonium
in monochrome"

32

56

"A caravan
adventure life"

"The wise
owl’s gaze"

Figure 11. Comparative analysis of patch sizes (32× 32 vs. 56× 56) in primitive initialization. The 32× 32 patch consistently enhances
visual details and textual coherence across most of the prompts.

"A beautiful
bonsai tree"

"Sketch of building
in urban area"

"Architecture of an
old cathedral"

"The euphonium
in monochrome"

"A serence sketch of
a tranquil harbor"

"Busy day in a
multi-story mall"

"A boat sailing
in open waters"

1

2

3

4

5

"Local supermarket
showcasing products"

Figure 12. Exploring the impact of varying primitive counts for each type within selected patches on sketch outcomes with diverse text
prompts in CLIPDraw++. (1) Few primitives yield abstract sketches (rows 1-2). (2) Optimal detail emerges with 3-4 primitives (rows 3-4).
(3) Excessive counts (row 5) complicate optimization, hindering synthesis. The study recommends deploying 3 primitives per type for
efficient synthesis, balancing complexity and resource utilization.

manuscript. Within Fig. 13, we present two sketches cor-
responding to the prompts “A portrait of an actor” and

“Apples hanging in full bloom” while varying weight fac-
tors λsem and λvis individually. For the “actor” example in

0.1 0.2 0.3 0.4 0.70.60.5 0.8 0.9 1.0

(a) A portrait of an actor .

0.1 0.2 0.3 0.4 0.70.60.5 0.8 0.9 1.0

(b) Apples hanging in full bloom.

Figure 13. Ablation study on the impact of semantic and visual loss weights, λsem and λvis in the total loss function. Sketches reveal optimal
values of 0.6 and 0.9, respectively, for λsem and λvis.

Fig. 13a, we fix λsem as 0.6 and vary λvis values while in the
second row, we fix λvis and vary λsem to show the impact of
each components. Our analysis establishes the optimal val-
ues for λsem and λvis at 0.6 and 0.9, respectively. Utilizing
these prescribed values yields a meticulous representation
of the upper body structure for the actor (in Fig. 13a) and
an accurately contoured depiction of the apple (in Fig. 13b)
example.

3.7. Variations
Being a generative sketch synthesis model, our CLIP-
Draw++ generates diverse sketches contextualized by the
same text prompt. These enhanced variations are attributed
to the utilization of robust latent diffusion models during the
initialization stage. Fig. 14 provides evidence for the afore-
mentioned claims, displaying four different output sketches
generated in response to the same input description.

3.8. Advantage of Primitives over Bézier Curves
In Fig. 16, we compare the effectiveness of using primi-
tive shapes like straight lines, circles, and semi-circles, with
Bézier curves, where we use Bézier curves in combination
with our remaining novel methodological components, and

observe that the Bézier curves still result in noisier sketches
(lower CLIP-T scores) compared to our primitives. We con-
jecture that since Bézier curves are more general objects,
they suffer from the lack of any geometric inductive bias
(which, in this case, is that, sketches can just as well be
expressed via simpler primitives like straight lines, circles,
and semi-circles). Therefore, they require wastefully more
strokes, making the synthesis task harder to optimize, and
one that results in significantly more noisy sketches.

4. Limitations

In this section, we shed some light on the proposed
method’s limitations, showcasing failure cases and explor-
ing possible reasons for such occurrences as follows:
• Interpretation of text prompts: LDM (used to compute

DAAM maps) and CLIP are not trained on similar objec-
tives, which could lead to discrepancies in the way they
process and interpret the input signals. In Fig. 15, the
sketch of “An angry woman staring at coworker” might
not depict the emotion of a woman as being angry or the
context of her staring at a coworker.
This issue can be somehow tackled by generating a vari-

"Conversations at a
coffee cafe"

"An underwater submarine" "Beautiful berry-laden
branch with leaves"

"A bulldozer in action on
a construction site"

"A day in the life of
a barber shop"

"A college building surrounded
by greenery"

Figure 14. Our proposed CLIPDraw++ method offers the generation of diverse sketches while adhering to their corresponding textual
semantics. In each example, given the same text prompt, four different sketches are synthesized using random seeds.

ety of cross-attention maps through the alteration of the
optimizer’s SEED.

• Lack of details: The sketches might lack the necessary
detail to fully convey all the contexts within a prompt.
For instance, the “Sketch of a tiny mechanical clock”
(Fig. 15) might not clearly show the mechanical aspects
of the clock. Similarly for “Poster of an anime show
describing various characters” does not describe all the

characters precisely.
The complexity of the sketches generated can vary based
on the primitive count. Increasing the number of prim-
itives can generate more complex visual representations
and textures for the input text prompt.

"An angry woman
staring at coworkers"

"Sketch of a tiny
mechanical clock"

"Poster of an anime
show describing

various characters"

"A bagpiper playing
in a wedding"

Figure 15. Some instances where the CLIPDraw++ model failed to synthesize sensible results.

0.30 0.39

(a) Bezier curve init. (b) Synthesized from (a) (c) Our initialization (d) Synthesized from (c)

Figure 16. Advantage of using primitives over Bézier curves.

References
[1] Frans, K., Soros, L., Witkowski, O.: CLIPDraw: Ex-

ploring Text-to-Drawing Synthesis through Language-
Image Encoders. In: NeurIPS (2022)

[2] Li, T.M., Lukáč, M., Michaël, G., Ragan-Kelley, J.:
Differentiable vector graphics rasterization for editing
and learning. In: SIGGRAPH Asia (2020)

[3] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,
J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. In: NeurIPS (2019)

[4] Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Om-
mer, B.: High-Resolution Image Synthesis with Latent
Diffusion Models. In: CVPR (2022)

[5] Tang, R., Pandey, A., Jiang, Z., Yang, G., Kumar,
K., Lin, J., Ture, F.: What the daam: Interpreting
stable diffusion using cross attention. arXiv preprint
arXiv:2210.04885 (2022)

[6] Vinker, Y., Pajouheshgar, E., Bo, J.Y., Bachmann, R.C.,
Bermano, A.H., Cohen-Or, D., Zamir, A., Shamir, A.:
CLIPasso: Semantically-Aware Object Sketching. In:
SIGGRAPH (2022)

	Implementation Details
	Initialization details
	Augmentation details
	Optimization details

	Sketch Generation from Primitives
	CLIPDraw++ Ablation Study
	Impact of Primitive-level Dropout
	Sketching with Diminished Opacity
	Patch-based Initialization
	Analysis of Patch Size
	Effect of primitives count within a patch
	Loss Ablation and Analysis
	Variations
	Advantage of Primitives over Bézier Curves

	Limitations

