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Supplementary Material

A. Comparison with Baselines

To assess our method’s performance with arbitrary masks,
Fig. 1 presents a comparative analysis between our approach
and the feature blending technique proposed by Suzuki et
al.[4], as well as BlendNeRF [1]. When users create masks
arbitrarily, our model excels at preserving the authenticity
and logical consistency of images, enabling edits at a se-
mantic level. In contrast, the feature blending technique is
limited to spatial modifications, often resulting in less nat-
ural outcomes. While BlendNeRF has some capability for
semantic-level editing, it struggles to align with user intent
when arbitrary masks are used. Kim et al.[1] suggested us-
ing poisson blending[2] to enhance image blending, but our
experiments show that this method is unsuitable for arbitrary
masks, leading to highly discordant results.

B. Editing Across Real Images

Through the use of Pivotal Tuning Inversion (PTI) [3], we
invert real images into the W+ space, as illustrated in Fig. 2.
Our results demonstrate the capability of our method to
conduct local edits among various real images without com-
promising their authenticity. Such an attribute significantly
broadens the utility of our approach, finding extensive appli-
cations in fields like medical cosmetology, forensic artistry,
and beyond.

C. Additional Experimental Results

We present an extensive array of editing outcomes within
Fig. 3 and Fig. 4, spanning various datasets. The second
column shows the results of ROI detection, and the third
column shows the results of local editing. These illustrations
affirm the versatility of our approach, capable of accom-
modating diverse applications through user-defined masks
across images of numerous object categories.
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Figure 1. Comparison our method with feature blending and BlendNeRF [1]. Note that PB refers to poisson blending.
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Figure 2. Editing cross real images.
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Figure 3. Results on StyleGAN2 trained with the FFHQ dataset
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Figure 4. Results on various object categories
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