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A. Summary
In this Appendix, we cover parallel works in Appendix B,

related works in Appendix C, limitations and discussions
in Appendix D, training details in Appendix E, evaluation
details in Appendix F, additional qualitative results in Ap-
pendix G, and additional ablation study in Appendix H.

B. Parallel Works
The core idea of our PA-VDM is to 1. assign progres-

sively increasing noise levels to the F frames in the atten-
tion window and 2. autoregressively apply the video diffu-
sion model on progressively noised frames to generate long
videos. The first part is inspired by Diffusion Forcing [4],
which proposes to assign independent per-frame noise levels
to some frames rather than a single noise level. We began de-
veloping our work right after July 1st, 2024, when Diffusion
Forcing [4] was released on arXiv. Our manuscript was first
submitted to peer review in early October, 2024. During this
period, our work was developed independently, without the
knowledge of two papers, Rolling Diffusion [38] and FIFO-
Diffusion [19]. While Rolling Diffusion, FIFO-Diffusion,
and PA-VDM arrive at a similar high-level idea in parallel,
the three methods have different focuses, naming and fram-
ing of the idea, implementation details, experimental setups,
and final result quality.

Compared to [6, 38], PA-VDM:
1. shows that it is possible to adapt a pre-trained video diffu-

sion model to the progressive noise level schedule through
finetuning, thus avoiding the otherwise immensely ex-
pensive computation cost of pre-training video diffusion
models. [38] is trained from scratch and [19] is training-
free.

2. achieves state-of-the-art 60-second long video generation
at a quality comparable to frontier video diffusion mod-
els, demonstrating much longer video length and better
quality than [19, 38].

We provide comparisons between our models (PA-M and PA-
O) and [19] on our 60-second long video generation bench-
mark (Appendix F.2) in Sec. 4.2 and Tab. 1. Our method
achieves substantially better qualitative and quantitative re-
sults than [19]. Notably, our method achieves FVD scores
of 358.020 (PA-M, fine-tuned) and 548.117 (PA-O, training-
free), significantly higher than [19]’s FVD of 975.459, which
ranks the last among the methods we tested. [19] incorpo-
rates techniques that require inference cost that more than
doubled the original cost, while our method only requires
additional inference cost that is a fraction of the original cost
(10% for PA-M and 16.66% for PA-O). We do not compare

PA-VDM with [38] as there is no released code and it does
not support text-conditioned open-domain generation.

C. Related Works

The field of long video generation has faced significant
challenges due to the computational complexity and resource
constraints associated with training models on longer videos.
As a result, most existing text-to-video diffusion models
[1, 10, 14, 15] have been limited to generating fixed-size
video clips, which leads to noticeable degradation in quality
when attempting to generate longer videos. Recent works
are proposed to address these challenges through innovative
approaches that either extend existing models or introduce
novel architectures and fusion methods.

Freenoise [36] utilizes sliding window temporal attention
to ensure smooth transitions between video clips but falls
short in maintaining global consistency across long video se-
quences. Gen-L-video [49], on the other hand, decomposes
long videos into multiple short segments, decodes them in
parallel using short video generation models, and later ap-
plies an optimization step to align the overlapping regions
for continuity. FreeLong [28] introduces a sophisticated ap-
proach which balances the frequency distribution of long
video features in different frequency during the denoising
process. Vid-GPT [7] introduces GPT-style autoregressive
causal generation for long videos.

More recently, Short-to-Long (S2L) approaches are pro-
posed, where correlated short videos are firstly generated
and then smoothly transit in-between to form coherent long
videos. StreamingT2V [12] adopts this strategy by intro-
ducing the conditional attention and appearance preserva-
tion modules to capture content information from previous
frames, ensuring consistency with the starting frames. It
further enhances the visual coherence by blending shared
noisy frames in overlapping regions, similar to the approach
used by SEINE [5]. NUWA-XL [56] leverages a hierarchi-
cal diffusion model to generate long videos using a coarse-
to-fine approach, progressing from sparse key frames to
denser intermediate frames. However, it has only been eval-
uated on a cartoon video dataset rather than natural videos.
VideoTetris [46] introduces decomposing prompts tempo-
rally and leveraging a spatio-temporal composing module
for compositional video generation.

Another line of research focuses on controllable video
generation [16, 45, 60, 61] and has proposed solutions for
long video generation using overlapped window frames.
These approaches condition diffusion models using both
frames from previous windows and signals from the current



window. While these methods demonstrate promising results
in maintaining consistent appearances and motions, they are
limited to their specific application domains which relies
heavily on strong conditional inputs.

D. Limitations and discussions

A limitation of our method is the demand of a well-trained
base video diffusion model. Similar to the replacement meth-
ods [15, 58] and other approaches like StreamingT2V [12],
our method autoregressively applies a video diffusion model
to generate long videos. Such autoregressive video genera-
tion poses huge challenge on the base video diffusion model.
Some slight errors remaining in the “clean” frames x0 may
not be noticeable in a single video clip; however, in the au-
toregressive scenario, these error can be carried onto later
frames, resulting in quality degradation. Further more, as
the video diffusion model is only trained on denoising latent
frames of real video data, it may poorly handle such distri-
bution shift towards the generated erroneous frames [6, 54],
resulting in more severe quality drop. This means that even
after finetuning on our progressive noise levels, our method
could still generate videos with some degree of quality degra-
dation close to the ending, if the base video diffusion model
is not well trained. Among the qualitative videos gener-
ated by our PA-M, in some cases, the video quality slightly
degrades in the last 10 seconds.

Another limitation of our method is the subtle temporal
flickering happening about every second in our PA-M results.
It is caused by a flaw in the backbone video diffusion model
M’s 3D VAE, as evident by the presence of such flickering
in both PA-M and RW-M results while no such flickering is
present in the PA-O results.

There are many promising future directions to extend
this work. We only train on progressively increasing noise
levels to reduce the space of noise levels for easier con-
vergence. If sufficient computing resources are available,
training on fully random, per-frame independent noise levels
would enable a single model for various tasks with arbitrary
lengths, including video extension, connection, temporal
super-resolution. Another promising future application of
the long video generation ability of our models is to use
them as world simulators, useful for tasks in robotics and 3D
vision. Being able to generate long videos without quality
degradation is an substantial step towards this direction.

E. Training details

M is pre-trained on captioned image and video datasets,
containing 1 million videos and 2.3 billion images. These
data are licensed and have been filtered to remove
low-quality content. We train PA-M on video clips
of 16, 32, ..., 176 raw frames that correspond to F =
5, 10, ..., 55 latent frames. The F = 55 attention window

length is derived by setting F = S + 5, where S = 50 is
the number of sampling steps in M (S = 30 in O) and 5
is the length of an additional chunk of latent frames, as de-
scribed in Secs. 3.3 and 3.4. The shorter latent frame lengths
F = 5, 10, ..., 50 are used for the variable length training,
as discussed in Sec. 3.2. RW-M is trained on videos of 64
frames that corresponds to F = 20 frames.

E.1. Modification to the base model
To implement progressive autoregressive video diffusion

models on top of their pre-trained foundation video diffu-
sion models, we do not need to modify the base model
architectures. Instead, we only need to modify the model’s
forward, training, and inference procedures. In the training
and inference procedures, we replace the single noise level
t ∈ [0, T ) from regular diffusion model training [13, 15]
with our per-frame noise level t0:F−1 and τ ′

0:S−1 (Secs. 3.1
and 3.5). To accommodate this change, we only need to
make a single modification to the the noise level embedding
computation in the model’s forward procedure. While the
regular timestep only has the batch size dimension B, our
progressive timesteps has two dimensions B,F . We first
flatten them into the batch dimension of size B × F , pass
it to the timesteps embedding module, unflatten the two
dimensions, and finally broadcast the timestep embedding
to the same shape of the frames so they can be combined
through either addition, concatenation, modulation, or cross-
attention [32, 33, 48].

F. Evaluation details

F.1. Baselines
As discussed in Sec. 4, using our base models, we im-

plement two baseline autoregressive video generation meth-
ods on three models, which are denoted as RW-M, RN-O-
base, and RN-O. We also compare to Stable Video Diffusion
(SVD) [1] and StreamingT2V [12] model families. Specifi-
cally, we consider the SVD-XT model from SVD, a image-
to-video model that generates a short video clip of 25 frames
at 576x1024 resolution given an conditioning image. We
apply it autoregressively, using the last image of the previ-
ous clip as the condition for generating a new clip. This
is equivalent to the replacement-without-noise method ex-
cept that it only conditions on a single frame rather than a
chunk of 17 frames as RN-O. We also consider the Stream-
ingSVD model from StreamingT2V, a image-to-long-video
generation model that uses SVD as the base model [12];
its autoregressive video generation is enabled by training
additional modules that connect to the base model via cross-
attention. Similar to our progressive autoregressive video
diffusion models, StreamingSVD can autoregressively gener-
ate long videos at 720x1280 resolution with arbitrary lengths,
which we set to 1440 frames. We also compare to a con-



current work FIFO-Diffusion [19] implemented on Open-
Sora-Plan v1.0.0 [23], denoted as FIFO-OSP. It generates
at 256x256 resolution with a context window of 65 latent
frames. See Appendix B for a discussion on [19] and other
concurrent works. See Appendix F for details on our test-
ing set, quantitative metrics, and traditional video quality
evaluation.

FIFO-OSP FIFO-Diffusion [19] is a parallel work that
adopts a similar high-level idea as our method on pre-trained
video diffusion models without any fine-tuning (see more dis-
cussion in Appendix B). It provides training-free implemen-
tations on VideoCrafter2 and Open-Sora-Plan v1.1.0 [23].
We choose its Open-Sora-Plan implementation since our
method is also implemented on DiT-base [32] models, M
and Open-Sora (O) [58]. Open-Sora-Plan v1.1.0 generate
videos at 512x512 resolution. Since there is no distributed
inference support in the released code of FIFO-Diffusion,
we adopt Open-Sora-Plan v1.0.0 in our reproduced FIFO-
Diffusion results in order to saving computation costs by
inferencing at the 256x256 resolution instead of the original
512x512 resolution.

F.2. Testing set
Text prompts and real videos Our testing set consists of
40 text prompts and the corresponding real videos, sampled
from Sora [58] demo videos, MiraData [18], UCF-101 [44],
and LOVEU [52, 53]. For each text prompt, we generate
two videos with 1440 frames, 60 seconds long at 24 FPS,
resulting in a total of 80 videos. We use these 80 videos
from each model for both quantitative and qualitative results,
unless specified otherwise. Due to computation resource lim-
itations of sampling 1-minute long videos, we only obtained
partial results from M-PA, StreamingSVD and FIFO-OSP,
including 48, 40, 40 videos from 24, 40, 40 text prompts
respectively. This testing set measures the zero-shot long
video generation ability of the models, since none of them
are specifically trained on any of the above datasets.

Real video initialization Since our focus is on long video
generation, we focus on the video extension capability of
the models rather than the text-to-short-video generation
capability. Thus, we use the initial frames of the videos as
the condition for all models, similar to the setting in [12].
M, O [58], StreamingSVD [12], SVD-XT [1], and FIFO-
OSP [19, 23] use 16, 17, 1, 1, and 65 frames from the real
video as the initial condition. Note that our PA-M and PA-O
only require one chunk of frames (16 and 17 for M and O
respectively), which is substantially less than the full context
window of 65 frames required by FIFO-Diffusion [19]. This
advantage is obtained from our variable-length autoregres-
sive generation design as described in Sec. 3.2.

S FVD↓
50 358.20

100 339.59

150 399.91

Table 2. Ablation on the number of sampling steps S of the PA-M
model.

G. Additional Qualitative Results
We provide additional quailtative results in Fig. 7.

H. Additional Ablation Study
In our project webpage, we show an ablation study on

our Variable Length design (Sec. 3.2). We compare Variable
Length inference results of PA-M models trained with and
without Variable Length. Without Variable Length training,
the second video shows temporal jittering and abrupt scene
change at the 1st and 59th seconds. This is because the model
is not trained to generate the first/last chunk of latent frames
to be consistent with the prior chunks. With Variable Length
training, the first video avoids the jittering and abrupt scene
change at the 1st and 59th seconds, and the video is tempo-
rally smooth. Furthermore, Variable Length inference en-
ables the model to generate precisely 1440 frames, whereas
without this technique the model would need to discard the
noisy chunks remaining in the context window, which corre-
spond to the 1441-1584th frames, when it reaches the 1440th
frame. Being able to stop the autoregressive video denoising
at a precise ending frame allows our model to generate a
proper ending to the video, e.g. the woman exits the camera
view in the first video, which is not possible without the
Variable Length technique.

Additionally, we ablate the number of sampling steps S
of the PA-M. Note that our progressive video denoising can
work with arbitrary S; when the chunked frames technique
is used, S only needs to be divisible by C. We compute
FVD scores in the same way as described in Sec. 4.2. As
shown in Tab. 2, further increasing S from 50 to 100 provides
marginal benefits despite doubling the inference compute
cost, while increasing S to 150 leads to slightly worse re-
sults.
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Figure 7. Qualitative comparison of PA-M (ours), RW-M, PA-O-base (ours), RN-O-base, StreamingSVD from StreamingT2V [12], SVD-XT
from Stable Video Diffusion [1], and FIFO-Diffusion [19]. Frames are evenly sampled from 1 minute long generated video, i.e. at 10, 20, 30,
40, 50, and 60 seconds. Our models can autoregressively generate 60-second, 1440-frame videos without quality degradation.


