
TT3D: Table Tennis 3D Reconstruction

Thomas Gossard * Andreas Ziegler Andreas Zell
Cognitive Systems - Univeristy of Tuebingen

Sand 1 Tuebingen 72076 Germany
thomas.gossard@uni-tuebingen.de

Abstract

Sports analysis requires processing large amounts of data,
which is time-consuming and costly. Advancements in neu-
ral networks have significantly alleviated this burden, en-
abling highly accurate ball tracking in sports broadcasts.
However, relying solely on 2D ball tracking is limiting, as
it depends on the camera’s viewpoint and falls short of
supporting comprehensive game analysis. To address this
limitation, we propose a novel approach for reconstruct-
ing precise 3D ball trajectories from online table tennis
match recordings. Our method leverages the underlying
physics of the ball’s motion to identify the bounce state that
minimizes the reprojection error of the ball’s flying trajec-
tory, hence ensuring an accurate and reliable 3D recon-
struction. A key advantage of our approach is its abil-
ity to infer ball spin without relying on human pose esti-
mation or racket tracking, which are often unreliable or
unavailable in broadcast footage. We developed an auto-
mated camera calibration method capable of reliably track-
ing camera movements. Additionally, we adapted an exist-
ing 3D pose estimation model, which lacks depth motion
capture, to accurately track player movements. Together,
these contributions enable the full 3D reconstruction of a
table tennis rally. Project page: https://cogsys-
tuebingen.github.io/tt3d/

1. Introduction

Accurately capturing the state of a game is fundamental for
effective sports analytics. Traditionally, this task required
extensive manual annotation, making it labor-intensive and
time-consuming. However, recent advancements in ma-
chine learning have significantly automated this process,
providing powerful tools to analyze gameplay and extract
meaningful insights [25]. Learning-based methods [49] al-
low for the precise extraction of player poses, while ad-
vanced object detectors enable effective tracking of the ball

*This research was funded by Sony AI.

Figure 1. (Top) 3D Reconstruction of table tennis game. We show
the reconstruction from different points of view with the players
and the ball (red dot). (Bottom) Corresponding frame from real
footage.

and other key objects [16]. By leveraging these automated
techniques, raw data can be systematically processed to
evaluate player performance, uncover tactical patterns, and
refine strategic decision-making, ultimately offering a com-
petitive edge. This processed data can have multiple uses.
For example, motion-captured recordings of table tennis
games were used to find the important shot characteristics
necessary to win a rally [24]. Wu et al. also showed that
it is possible to predict the ball bouncing position from the
serve stroke motion [44]. Using such data can furthermore
enable a policy to learn sport skills like tennis strokes [48].
Finally, precise game state estimation has the potential to
enable automated officiating, reducing human error in ref-
ereeing and improving fairness in sports [42].

Despite these advancements, a key challenge remains:
most game recordings are captured using monocular cam-

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5821

https://cogsys-tuebingen.github.io/tt3d/
https://cogsys-tuebingen.github.io/tt3d/

eras, leading to a loss of depth information. While 2D ball
tracking provides valuable insights, it remains inherently
limited by perspective distortions and camera positioning.
For a more robust and comprehensive analysis, spatial data
must be reconstructed in 3D, as it eliminates viewpoint de-
pendencies and allows for a more accurate representation of
ball motion and interactions. Therefore, the primary objec-
tive of this paper is to achieve 3D reconstruction of sports
games, with a specific focus on the challenging task of re-
constructing ball trajectories for table tennis.

Table tennis presents unique challenges due to its highly
dynamic nature. For comparison, tennis averages 1.3 hits
per second [1], while badminton ranges from 1.26 to 1.76
hits per second [2, 20]. In contrast, table tennis can reach
up to 2 hits per second [2]. Additionally, ball spin plays
a crucial role in shaping its trajectory. The Magnus effect
causes the ball to curve in mid-air, while its spin signifi-
cantly influences its bounce trajectory, altering its direction
upon impact. These factors make the ball’s 3D trajectory
particularly complex, as the reconstruction must accurately
account for aerodynamic forces and bounce dynamics com-
pared to badminton. But these dynamics are also what will
help infer the 3D motion of the ball from just the 2D obser-
vation. Finally, we have to deal with a lot of ball occlusion
due to the players, depending on the point of view.

In this work, we propose a complete pipeline to recon-
struct the 3D state of the table tennis game: 3D player pose
and 3D ball trajectory. For this purpose, we developed an
automated camera calibration method capable of tracking
both the camera’s pose and focal length. It achieves this
by locating the table corners using a segmentation mask of
the table surface. We also propose a novel method to re-
construct 3D ball trajectories from monocular table tennis
match recordings. Our approach leverages the physics of
ball motion to reconstruct the ball’s 3D trajectory from the
table bounce position, achieving robust and accurate pre-
dictions even under challenging real-world conditions. In-
tegrating 3D human pose estimation finally allows us for a
complete 3D reconstruction of table tennis matches.

2. Related Work
Many 3D reconstruction methods have been developed for
different sports such as badminton [21], football [23], ten-
nis [12], basketball [8, 47], table tennis [7, 32, 36] or volley-
ball [9]. Reconstructing the 3D state of a ball sport involves
three fundamental components: camera calibration, ball de-
tection and tracking, and 2D-to-3D lifting. Each step plays
a critical role in ensuring accurate 3D trajectory reconstruc-
tion.

2.1. Single View Camera Calibration
Camera calibration is essential to determine the camera ma-
trix K and the camera pose, which is defined by the rotation

matrix R and the translation vector T . These parameters
enable the transformation between 3D world coordinates
and 2D image coordinates using the pinhole camera model.
Specifically, given a 3D world point Xw = [X,Y, Z]T and
its corresponding image point x = [u, v, 1]T , the relation-
ship is defined by the projection matrix P , expressed as

x = PXw = K[R|T]Xw. (1)

Typically, camera calibration is conducted using a moving
calibration pattern, such as a checkerboard, an asymmet-
ric circle grid, or Aprilgrid [26]. Broadcast footage usually
does not require camera calibration, and information about
the camera’s placement or focal length is generally not pro-
vided in such recordings. To address this, objects of known
geometry in the scene are used for calibration.

In racket sports like badminton and tennis, the intersec-
tions of court lines and net poles are commonly used [21,
45]. This process relies on a combination of computer vi-
sion techniques, including color filtering, Canny edge de-
tection, Hough line transforms, and sport- or Point Of View
(POV)-specific heuristics. Currently, no automatic calibra-
tion methods exist for table tennis. This is due to the lim-
ited number of field features compared to sports like ten-
nis or badminton, the smaller court size, variations in field
color schemes, diverse recording POVs, and frequent oc-
clusions. As a result, many approaches resort to manually
annotating features on the images for the calibration pro-
cess [7, 12, 32, 36, 42].

2.2. Ball Tracking
Once the camera is calibrated, the next step is ball detection
and tracking. Traditional computer vision methods, includ-
ing color filtering, background subtraction, and blob detec-
tion, have been widely used for this task [5, 14, 36, 38, 42].
More recently, deep learning-based approaches, such as
fine-tuned general object detectors like Detectron2 [7] and
YOLOv4 [18], have gained popularity in sports applica-
tions. However, in scenarios where a single ball is present, a
common approach is to generate a heatmap representing its
most probable location using models such as DeepBall [13],
TracketNet and its variants [10, 13, 29, 34], Monotrack [21],
WASB [37], and BlurBall [4]. Among these, BlurBall not
only estimates the ball’s position but also provides motion
blur information, offering valuable insight into velocity.
This is particularly beneficial in table tennis, where fewer
frames are available to capture ball trajectories compared to
other racket sports. In our pipeline, we adopt BlurBall as
the primary ball detector.

2.3. 3D Reconstruction
With the 2D ball positions available, we now need to re-
construct the 3D data from it. The first step is to seg-
ment the whole rally into individual ball trajectories, i.e.

5822

between two player strikes. Previous methods either use
heuristics on the change in velocity [7, 32] or Gated Recur-
rent Unit (GRU) networks to detect frames where the ball
bounces or is hit by players [12, 21], using inputs such as
field coordinates, ball positions in image space, and player
pose. With the individual trajectory isolated, we can infer
the 3D trajectory.

Calandre et al. [7] propose the use of the observed diam-
eter of the ball to infer its 3D position, with depth estimated
using the camera’s intrinsic parameters. The resulting 3D
positions are then projected onto a 2D plane fitted to all ob-
served ball locations from the trajectory. This approach as-
sumes that no sidespin is applied to the ball. Unfortunately,
this method is impractical for broadcast recordings, as the
ball’s small apparent diameter (lower than 10 pixels) and
the sensitivity of depth regression to measurement errors
make accurate 3D position estimation unfeasible. Nonethe-
less, humans are still able to infer the ball’s 3D trajectory
to some extent. This ability stems from our understand-
ing of the physics governing the ball’s flight and bounce,
which constrains the predicted 3D trajectory only to plausi-
ble paths. The flight path of the ball can be modeled using
an Ordinary Differential Equation (ODE), where the trajec-
tory is predicted from an initial position and velocity. By
projecting the predicted trajectory onto the image plane us-
ing the pinhole camera model, the ball’s initial state can
be optimized to minimize the reprojection error. Liu et al.
employed this approach for badminton [21]. However, the
optimization problem is non-convex and prone to local min-
ima, requiring good initialization or additional constraints
to guide convergence toward the correct solution. Liu et
al. addressed this issue in badminton by constraining the
initial and final 3D positions of the shuttlecock, ensuring
they were close to the player’s hand as estimated by a pose
detection model. A similar approach was tested in table ten-
nis [32] but the additional constraints were set as the ball’s
first and second bouncing position for the serve. Indeed, the
3D position of the bouncing ball can be inferred as a ray-
plane intersection. However, the defined ODE completely
ignores drag and the Magnus effect and this method was
only tested for serves. An alternative to optimization-based
methods is treating the problem as a regression task. In ten-
nis, SynthNet [12] utilizes a synthetic dataset of ball trajec-
tories to train a Multi-Layer Perceptron (MLP) that predicts
the ball’s initial position and velocity based on its 2D tra-
jectory before the bounce and the court’s pose.

3. Camera Calibration
Camera calibration requires matching 2D image features to
their corresponding 3D world points. In table tennis, the
table’s standardized dimensions make it the only viable cal-
ibration target. The world frame is thus defined relative to
the table, as illustrated in Fig. 3d.

A closed-form solution for estimating camera parame-
ters can be obtained using Direct Linear Transform (DLT) if
at least six non-coplanar points are available. For the table,
potential calibration features include its corners (4 points),
center line (2 points), and net poles (2 points). However,
these features are often obstructed by players or not de-
tected, making the use of DLT impractical. To simplify the
problem, we assume no lens distortion (d = 0), the opti-
cal center aligns with the image center (cx = w/2, cy =
h/2), and the focal lengths are equal in both directions
(fx = fy). Under these assumptions, the problem falls
into the Perspective-n-Point (PnP) domain with unknown
focal length (PnPf). Only 3.5 points are required to esti-
mate the camera’s focal length f and extrinsic parameters
R and T [43]. As such, we can calibrate the camera with
only 4 points (which can be coplanar). Since it is unlikely
for an entire table edge to be obstructed, we chose the table
corners—defined as the intersections of the table edges—as
our calibration points.

In the following sections, we discuss the various compo-
nents of the calibration process. Section 3.1 details the cam-
era calibration approach, assuming we already have access
to the necessary keypoints. Next, we introduce our table
tennis table segmentation model in Section 3.2. Finally, in
Sec. 3.3, we describe how the table mask is used to extract
the features necessary for calibration.

3.1. Calibration

Existing PnPf methods are highly complex and depend on
advanced algebraic solvers, such as Gröbner solvers [17, 27,
43, 50, 51]. Zheng et al. [50] showed that, with a good ini-
tialization of the camera pose and focal length, minimizing
the reprojection error can achieve accuracy comparable to
state-of-the-art PnPf methods. Given this insight, we opted
to frame the PnPf problem as an optimization problem, re-
sulting in a much simpler approach. This is feasible because
the camera is always positioned within a specific distance
from the table and must cover the entire field, significantly
constraining the range of possible focal lengths. We de-
scribe the optimization procedure in Algorithm 1. We begin
by using PnP to estimate the camera pose (R and T) with
the currently estimated focal length f . Next, we refine f by
minimizing the reprojection error. These two steps are re-
peated iteratively until the focal length converges. As men-
tioned earlier, proper initialization is crucial. Manual anno-
tation of features using DLT yielded focal lengths ranging
from 1000 to 3000. Therefore, we initialize the focal length
at 1500. The advantage of our approach is the flexibility. It
can work with just 4 coplanar points.

To validate our approach, we conducted tests using syn-
thetically generated points for random table positions, ori-
entations, and focal lengths to assess the calibration accu-
racy of the calibration. As shown in Figure 2, the table’s ro-

5823

Algorithm 1 Estimate Focal Length By Minimizing Repro-
jection Error

Require: Set of 3D points X = {Xi}, corresponding 2D
image points x = {xi}, initial focal length f0, conver-
gence threshold ϵ, maximum iterations N

Ensure: Optimized focal length f∗

1: Initialize f ← f0
2: Set iteration counter k ← 0
3: repeat
4: Solve the PnP problem with f to estimate R,T
5: Compute the total reprojection error:

E(f) =
∑
i

||xi −K[R|T]Xi||

6: Update f by minimizing E(f) using a line search
7: Increment iteration counter k ← k + 1
8: until |E(fprev)− E(f)| < ϵ or k ≥ N
9: Set f∗ ← f

10: return f∗

tation is accurately estimated, with an average error of only
3 degrees. However, the translation vector and focal length
show significant errors. This limitation arises from using
only four planar points, which results in a strong correla-
tion between focal length and depth estimation. This cor-
relation makes it challenging to estimate these parameters
independently. Despite this limitation, it doesn’t impact the
downstream reconstruction task, as errors in one parameter
are often compensated for by corresponding adjustments in
the other. The method demonstrates strong performance in
estimating the XY components, achieving a Mean Relative
Absolute Error (MRAE) of just 5%, indicating its particular
effectiveness in the plane of the table.

The described method can be applied to individual
frames. However, when processing a video with potential
camera movement and zooming, integrating a Kalman Fil-
ter can help refine the raw observations, providing smoother
and more accurate estimates.

3.2. Segmentation Model

To extract the features necessary for the camera calibration,
we need to accurately identify the table. We propose to do
so with a segmentation model. Promptable segmentation
models like SAM [30] can identify table regions, even with
players occluding parts of the table. However, they strug-
gle with net segmentation and often include the table’s ver-
tical sides in the mask. The same goes for depth models
like DepthAnything V2 [46] which do not perfectly allow
to identify the table’s surface.

To address our specific requirements, we developed a
custom table segmentation model. We began by assem-

Figure 2. Mean Relative Absolute Error (MRAE) and Mean Abso-
lute Error (MAE) for camera parameters estimated with Algorithm
1 for 1000 samples with noise. The table position was randomly
sampled within the camera frame coordinates, ranging from [-2,
-2, 5] to [2, 2, 20] (m), and the focal length was randomly sampled
between 500 and 3000.

bling a dataset of 1,200 images sourced from online videos
and manually labeled them. We then fine-tuned pre-trained
models for table tennis table segmentation. Given the task’s
relative simplicity, we focused on lightweight models with
no more than 2 million parameters. After extensive testing,
we selected a U-Net++ architecture [52] with a pre-trained
RegNetY encoder [28] (2M parameters) for its optimal bal-
ance between inference speed and accuracy. The model was
trained using the Dice loss [33]. Our final model achieves
a mean Intersection over Union (mIoU) of 0.92 on the test
set and runs at 70 frames per second, making it suitable for
real-time applications.

3.3. Feature extraction

We first try to extract the table corners. We start by extract-
ing the table contours from the segmentation mask using the
method proposed by Suzuki et al. [35] (Figure 3a). Smaller
contours are filtered out, keeping only the two largest ones.
If the mask is not convex, additional internal contours might
appear, which are also removed. Using the probabilistic
Hough transform [22], we identify and group similar lines
to detect the table edges. If exactly four lines remain, their
intersections are calculated and sorted clockwise to deter-
mine the table’s four corners (Figure 3c). These corner
points are then used for an initial camera calibration using
the method described in Sec. 3.1. To lift the corner order-
ing ambiguity, we perform this calibration twice with dif-
ferent corner orderings and select the result with minimal

5824

(a) Mask (yellow) and contours
(red)

(b) Canny edge within table mask
(white) and Hough lines (green)

(c) Table edges (blue lines), mid-
line (green), and detected features
(numbered points)

(d) Calibrated camera with repro-
jected features.Red, Green and blue
axes are respectively X, Y and Z.

Figure 3. Calibration pipeline. (a) Mask with contour, (b) Midline
detection (c) Detected corners and midline, (d) Final calibrated
camera.

reprojection error and a plausible transformation (e.g., the
camera isn’t unrealistically far, typically under 10m).

This initial calibration can then be leveraged to detect
other features such as the midline. We detect the midline
using a combination of Canny edge detection and the Hough
line transform within the table mask as shown in Figure 3b.
The detected lines are filtered based on the known directions
of the table edges, and the midline points are defined by the
intersection between the midline and the back edge of the
table. The midline points are not necessary for calibration
but will improve the calibration accuracy.

4. Trajectory Segmentation
We use BlurBall [4] to detect the ball for a whole rally. To
analyze individual ball trajectories, we segment the rally
using piecewise polynomial segmentation. Since a ball’s
flight trajectory can be well approximated by a second-
degree polynomial [41], this approach naturally aligns with
the motion characteristics of the ball. These trajectory seg-
ments can be effectively identified through segmentation
and solved efficiently using dynamic programming, as de-
scribed in [11]. The solution is one that minimizes

J =

T∑
t

(|ut − Pu(t)|+ |vt − Pv(t)|) + λK, (2)

where (ut, vt) are the ball pixel coordinates at time t, Pu

and Pv are respectively the piecewise polynomes fitted to u
and v, λ is a penalty for creating new polynomes and K is
the number of segments in the piecewise polynomes.

This approach was selected for its robustness, as it is in-
dependent of the POV and, unlike previous methods using

GRU networks [12, 21], does not rely on the players’ pose.
However, we observed that the number of frames between
the table bounce and racket strike can be quite low. Attacks
require the ball to be hit as early as possible which then
leads to obstruction by the player. The number of balls ob-
served in between can be too small to be detected as a new
segment. To solve this, we leverage the additional blur in-
formation provided by BlurBall [4]. The blur is linked to the
ball’s velocity and thus to the derivative of the polynomials.

Berror =

∣∣∣∣θt − arctan(
Pv(t)

′

Pu(t)′
)

∣∣∣∣ (3)

where θt is the observed motion blur. We add this blur error
Berror to the cost function J .

The piecewise polynomial segmentation offers greater
generalizability compared to heuristic approaches, such as
detecting changes in the ball’s velocity, as used in [7, 32].

Once these polynomials are determined, bounce posi-
tions and times can be precisely calculated at the intersec-
tion points of consecutive polynomial segments. This is ex-
tremely important as most recordings run at 25 fps. This
would lead to an uncertainty in the bounce time of 40 ms
(time between successive frames for 25 fps) and a bounce
position error that can go up to 40 cm for a ball with a ve-
locity of 10 m/s. As explained in Section 5.2, we require
a very accurate bounce position for our reconstruction to
work. This method offers higher accuracy than previous
approaches, which are inherently limited by the video fram-
erate. An example of the segmentation is shown in Figure 4.

To differentiate between racket strikes and table bounces,
we employ a heuristic approach. Specifically, we assume
that a change in direction along the table’s longitudinal axis
indicates a racket strike.

4.1. Bouncing Position
Throughout the ball’s trajectory, there exists a discrete mo-
ment where its exact 3D position can be determined: the
bounce. At this instant, the ball is in direct contact with the
table, whose pose is known from the camera calibration.
This constraint restricts the possible ball positions to a 3D
plane defined by its normal vector n and a point Xplane.
Furthermore, trajectory segmentation provides the precise
image coordinates of the ball at the bounce point, allowing
us to compute the corresponding ray direction as

d = K−1

uv
1

 . (4)

The intersection of this ray with the plane yields the 3D
bounce position of the ball

Xbounce =
Xplane · n

d · n
d. (5)

5825

Figure 4. Segmentation of a rally. The dots represent the de-
tected ball positions, while the vertical lines delineate different
segments. Using heuristics, table bounces are marked in red and
racket bounces in blue. The black crosses indicate the precise
bounce coordinates, determined by the intersection of the fitted
second-degree polynomials.

However, the computed intersection lies on the court plane,
whereas the actual contact point is slightly offset due to the
ball’s radius. This offset is particularly significant when
the camera’s viewpoint is low and close to the court plane,
where perspective effects amplify small vertical errors. We
deal with this by shifting Xplane upwards by the radius of
the ball with regard to the table.

5. 3D Reconstruction
Using the camera calibration and the segmented 2D ball tra-
jectory, we reconstruct the 3D ball trajectory. To achieve
this, we leverage the ball dynamics described in Section 5.1.
These dynamics are used to optimize the ball’s bounce ve-
locity and spin, minimizing the reprojection error as de-
tailed in Section 5.2.

5.1. Physics Model
The ball dynamics are divided into two categories: the air-
borne motion of the ball and its behavior during bounces.
The airborne ball trajectory is defined by the following
ODE [40]:

mv̇ = kD||v||v︸ ︷︷ ︸
Drag

+ kMω × v︸ ︷︷ ︸
Magnus

+mg (6)

where m = 2.7 × 10−3 kg is the mass of the ball, v
and ω are respectively the ball velocity and spin, kD =

3.8 × 10−4 kg · s−4 is the drag coefficient, kM = 4.86 ×
10−6 kg · s−4·m−1 is the Magnus coefficient and g is the
gravity vector. The ODE in Equation (6) lacks an analyti-
cal solution due to the quadratic drag term and the Magnus
force’s dependence on spin and velocity. However, it can
be solved as an initial value problem using Runge-Kutta or
collocation methods.

The bounce is a discrete event that is not described by
an ODE. It is modeled using a Coulomb friction model [6]
with:

v+ = Av− +Bω−

ω+ = Cv− +Dω−.
(7)

where v−, ω− and v+, ω+ are respectively the ball ve-
locity and spin before and after the bounce. The dynamic
matrices A, B, C, and D will be different depending on
whether the ball is rolling or sliding. The bounce type can
be distinguished with the coefficient α.

α =
µ (1 + kCOR) |v−z |√(

v−x − ω−
y r

)2
+
(
v−y + ωxr

)2 (8)

where kCOR = 0.85 is the Coefficient Of Restitution
(COR), µ = 0.3 is the friction coefficient and r = 0.02m
is the radius of the ball.

If α ≥ 0.4, then the ball is rolling and we use the follow-
ing matrices:

A =

 1− α 0 0
0 1− α 0
0 0 −kCOR

 B =

 0 αr 0
−αr 0 0
0 0 0

C =

 0 − 3α
2r 0

3α
2r 0 0
0 0 0

 D =

 1− 3
2α 0 0

0 1− 3
2α 0

0 0 1

 .

(9)
If α < 0.4, then the ball is sliding and we use the following
matrices:

A =

 0.6 0 0
0 0.6 0
0 0 −kCOR

 B =

 0 αr 0
−αr 0 0
0 0 0

C =

 0 −0.6/r 0
0.6/r 0 0
0 0 0

 D =

 0.4 0 0
0 0.4 0
0 0 1

 .

(10)
Wang et al. [41] showed that, though the ball spin can

be approximated by the curve in the trajectory due to the
Mangus effect, it can be further refined from the change in
direction after the bounce leading to accurate spin estima-
tion. Though we do not have access to the 3D ball trajectory,
we can observe the ball’s curve and the change in direction
after the bounce. Since we take into account the spin in the
physical model, we are able to infer the spin of the ball from

5826

only the 2D ball trajectory. Pre-existing methods that infer
spin from monocular recordings usually rely on the player
stroke movement [19, 31].

5.2. Reconstruction
From the trajectory segmentation, we extracted the exact
image position and timestamp of the ball’s bounce on the
table. By computing the intersection of the image ray cor-
responding to the bounce position with the 3D table plane,
we determine the precise 3D bounce position of the ball,
p0. Unlike previous methods [12, 21, 32], which initial-
ize their models at the start of the trajectory, we use the
bounce as the initial state. This approach eliminates the
need to optimize for the ball’s position and instead focuses
on optimizing its velocity and spin immediately before the
bounce, represented as v− and ω−. Using a bounce model,
we compute the ball’s velocity v+ and spin ω+ just after
the bounce. We then estimate the 3D positions of the ball
before and after the bounce, denoted as X̂k. By optimizing
[v−,ω−] for the reprojection error, we reconstruct the 3D
trajectory of the ball. We use IPopt [39] in Casadi [3] to
optimize our loss function, defined as:

Lball =

n∑
k=0

||xk − x̂k||22 =

n∑
k=0

||xk − PX̂k||22 (11)

where xk represents the observed ball positions. The ball
spin is initialized to ω− = [0, 0, 0]T (rad/s) and the ball
velocity to v− = [0,±5,−3]T (m/s).

6. 3D Pose Estimation
So far, our primary focus has been on reconstructing the
ball’s 3D trajectory. While valuable on its own, this infor-
mation becomes significantly more insightful when com-
bined with player motion and stroke estimation. By linking
the ball’s trajectory to the player’s movements and actions,
we can gain a deeper understanding of gameplay dynamics,
strategy, and shot execution.

To achieve this, we first track the players and estimate
their 2D pose using RTMPose [15]. We then infer their
3D pose with MotionBERT [53]. However, since the es-
timated 3D pose is expressed in camera coordinates, it must
be transformed into the world frame. Camera calibration
provides the necessary rotation, but estimating the transla-
tion vector T and scale factor s remains a challenge.

We estimate T by minimizing the reprojection error be-
tween the detected 2D keypoints and the projected 3D pose
in the world frame:

Lpose =

17∑
k=1

∥qk − sK(Qk + T)∥22 + λLfloor (12)

where qk represents the observed 2D joint positions, Qk

denotes the inferred 3D joint positions in the camera frame,

Figure 5. Floor contact estimation based on the vertical velocity
of the players’ ankles.

and s is the scale factor of the projection and λ = 10 is
a weight coefficient. Lfloor is an additional constraint to
ensure that the player’s feet touch the ground and that the
depth information is correctly estimated. Indeed, although
the 3D pose model accurately captures lateral motion, it
struggles with depth estimation relative to the camera. This
issue is particularly pronounced in side-view recordings,
where precise depth perception is critical for reliable player
tracking. We thus define Lfloor as

Lfloor = 1contact(t)
(
∥qleft ankle − 0.1∥22 + ∥qright ankle − 0.1∥2

2

)
,

(13)
where we approximate the ankle height as 0.1 m when the
feet are touching the floor. We define floor contact as peri-
ods when the vertical velocity of the ankles remains below
a predefined threshold, indicating contact. By constrain-
ing translation estimation to these stable frames, we obtain
more accurate and consistent pose estimates. Jumps would
otherwise cause the estimated pose to shift backward. For
frames where the feet are not in contact with the floor, we
interpolate the translation linearly to ensure smooth motion
across the sequence. An example of floor contact estimation
is shown in Figure 5.

7. Experiments
While qualitative assessment of our pipeline can be per-
formed through visual inspection of the reconstructions, ob-
taining a quantitative evaluation is considerably more chal-
lenging due to the lack of video recordings with calibrated
cameras, synchronized human motion capture and 3D ball
tracking. Therefore, we evaluate the individual components
of our pipeline to the best of our ability.

7.1. Camera Calibration
We first evaluated the accuracy of table corner detection.
For this, we manually labeled the exact positions of the ta-

5827

Figure 6. Continuous camera calibration from an online video.
The darker lines are the filtered observations using a Kalman filter.

ble corners in 40 images distinct from the training set We
achieved a Mean Absolute Error (MAE) of 2.39 ± 1.47 px.

We performed camera calibration on a video with camera
movement and zooming 1. The results, shown in Figure 6,
demonstrate that the estimated parameters are temporally
consistent. Additionally, slight variations in f closely align
with changes in the Z component of T , as their estimations
are interdependent.

In the supplementary material, we also include multiple
examples of successful camera calibration as well as exam-
ples of failure cases, which we go into more detail in Sec-
tion 7.3.

7.2. 3D Ball Trajectory Reconstruction Benchmark

We recorded a table tennis match between two club-level
players using a multi-camera system capable of tracking the
ball’s 3D position at 200 Hz. However, the system requires
orange balls, which BlurBall was not trained to detect, ren-
dering the ball detector inapplicable. Despite this limitation,
the recorded 3D trajectories are accurate and can be used to
generate simulated 2D observations at 25 fps using the pin-
hole camera model. To achieve this, we created 130 ball
trajectories from side, oblique, and back views, introducing
noise to the 2D ball position (σpb

= 2 px) and to the blur
estimation (σθ = 6◦, σl = 1 px). The standard deviations
were set according to the error observed in [4]. The evalu-
ation results are presented in Table 1. We can observe that
our rally reconstruction is robust to noise. This is because,
with enough observations, the constraints imposed by the

1First rally of https://www.youtube.com/watch?v=
nd40lIYtQmA

Table 1. 3D Reconstruction errors using our method

POV No Noise Noise

Succ. [%] MAE [cm] Succ. [%] MAE [cm]

Side 97.3 8.9 97.3 12.4
Oblique 91.5 14.5 89.9 17.1
Back 92.3 22.3 86.9 29.8

physics filter out the noise. While we can’t directly vali-
date the estimated bounce spin due to lack of ground truth,
the low reconstruction error suggests it is reasonably accu-
rate—since spinless trajectories would differ significantly,
and topspin was applied during recording as instructed.

7.3. Limitations
While our camera calibration method is effective in most
cases, it has certain limitations. Failures primarily occur
due to player-induced occlusions, where body contours may
be misinterpreted as table edges. This issue is particularly
pronounced in back-view recordings, where the player fre-
quently obstructs a significant portion of the table. How-
ever, since players move dynamically throughout a rally,
clear views of the table naturally emerge, providing reliable
opportunities for calibration. Additionally, if the camera’s
elevation angle is too low, the calibration process may be-
come less reliable. In such cases, the segmentation model
doesn’t perform as well because of the thin shape of the
mask and the intersection of detected table edges becomes
highly sensitive to minor errors, increasing the likelihood of
calibration failure.

While the ball detection method remains effective with
moving cameras, the trajectory segmentation does not, as
the ball’s observed motion no longer follows a polynomial
trajectory. Furthermore, our segmentation approach relies
on second-degree polynomials, requiring the ball to be vis-
ible for at least three frames after a bounce. In some cases,
this condition is not met due to occlusions caused by play-
ers or when the ball is hit back early after bouncing, limiting
the effectiveness of the trajectory segmentation process.

8. Conclusion
We developed a method capable of reconstructing the 3D
trajectory of a table tennis ball from an online recording.
Moreover, the camera calibration is performed automati-
cally compared to previous approaches. With our approach,
we can make use of the vast amount of table tennis match
recordings available on the internet. This can help get better
player statistics or build a table tennis foundation model that
could for example predict the next likely stroke or real-time
win probability. While our method has been tested exclu-
sively on table tennis, it could be easily adapted for other
racket sports like tennis or pickleball.

5828

https://www.youtube.com/watch?v=nd40lIYtQmA
https://www.youtube.com/watch?v=nd40lIYtQmA

ACKNOWLEDGMENT
Thank you to Dieter Buechler and Jan Schneider for their
help with the recording setup and to Giorgio Becherini and
Chuyu Yang for participating in the recordings.

References
[1] How To Experience More Time In Tennis | Feel Tennis.

https://www.feeltennis.net/experience-more-time/. 2
[2] J. A. The fastest sport? Table Tennis VS Badminton, 2017.

2
[3] Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawl-

ings, and Moritz Diehl. CasADi – A software framework for
nonlinear optimization and optimal control. Mathematical
Programming Computation, 2018. 7

[4] Anonymous. Blurball: ball detection with blur estimation,
2025. 2, 5, 8

[5] M. Archana and M. Kalaisevi Geetha. Object Detection and
Tracking Based on Trajectory in Broadcast Tennis Video.
Procedia Computer Science, 58:225–232, 2015. 2

[6] H. Bao, X. Chen, Z. Wang, M. Pan, and F. Meng. Bounc-
ing model for the table tennis trajectory prediction and the
strategy of hitting the ball. In 2012 IEEE International Con-
ference on Mechatronics and Automation, pages 2002–2006,
2012. 6

[7] J. Calandre, R. Péteri, L. Mascarilla, and B. Tremblais. Ex-
traction and analysis of 3D kinematic parameters of Table
Tennis ball from a single camera. In 2020 25th International
Conference on Pattern Recognition (ICPR), pages 9468–
9475, Milan, Italy, 2021. IEEE. 2, 3, 5

[8] Hua-Tsung Chen, Ming-Chun Tien, Yi-Wen Chen, Yi-Wen
Chen, Wen-Jiin Tsai, and Suh-Yin Lee. Physics-based ball
tracking and 3D trajectory reconstruction with applications
to shooting location estimation in basketball video. Journal
of Visual Communication and Image Representation, 20(3):
204–216, 2009. 2

[9] Hua-Tsung Chen, Wen-Jiin Tsai, Wen-Jiin Tsai, Suh-Yin
Lee, and Jen-Yu Yu. Ball tracking and 3D trajectory ap-
proximation with applications to tactics analysis from single-
camera volleyball sequences. Multimedia Tools and Applica-
tions, 60(3):641–667, 2012. 2

[10] Yu-Jou Chen and Yu-Shuen Wang. Tracknetv3: Enhancing
shuttlecock tracking with augmentations and trajectory rec-
tification. In Proceedings of the 5th ACM International Con-
ference on Multimedia in Asia, New York, NY, USA, 2024.
Association for Computing Machinery. 2

[11] J. Duan, Q. Wang, and Y. Wang. HOPS: A Fast Algorithm
for Segmenting Piecewise Polynomials of Arbitrary Orders.
IEEE Access, 9:155977–155987, 2021. 5

[12] M.H. Ertner, S. S. Konglevoll, M. Ibh, and S. Graßhof. Syn-
thNet: Leveraging Synthetic Data for 3D Trajectory Estima-
tion from Monocular Video. In Proceedings of the 7th ACM
International Workshop on Multimedia Content Analysis in
Sports, pages 51–58, New York, NY, USA, 2024. Associa-
tion for Computing Machinery. 2, 3, 5, 7

[13] Y. Huang, I. Liao, C. Chen, T. İk, and W. Peng. TrackNet: A
Deep Learning Network for Tracking High-speed and Tiny

Objects in Sports Applications. In 2019 16th IEEE Inter-
national Conference on Advanced Video and Signal Based
Surveillance (AVSS), pages 1–8, 2019. 2

[14] C. Hung. A Study of Automatic and Real-Time Table Tennis
Fault Serve Detection System. Sports, 6(4):158, 2018. 2

[15] Tao Jiang, Peng Lu, Li Zhang, Ningsheng Ma, Rui Han,
Chengqi Lyu, Yining Li, and Kai Chen. Rtmpose: Real-
time multi-person pose estimation based on mmpose. arXiv
preprint arXiv:2303.07399, 2023. 7

[16] Paresh R. Kamble, Avinash G. Keskar, Avinash G. Keskar,
and Kishor M. Bhurchandi. Ball tracking in sports: A survey.
Artificial Intelligence Review, 52(3):1655–1705, 2019. 1

[17] Ekaterina Kanaeva, Lev Gurevich, and Alexander Vakhitov.
Camera pose and focal length estimation using regularized
distance constraints. In BMVC, pages 162–1, 2015. 3

[18] K. Kulkarni, R. Jamadagni, J. Paul, and S. Shenoy. Table
Tennis Stroke Detection and Recognition Using Ball Trajec-
tory Data. SSRN Electronic Journal, 2022. 2

[19] Kaustubh Milind Kulkarni and Sucheth Shenoy. Table ten-
nis stroke recognition using two-dimensional human pose
estimation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) Work-
shops, pages 4576–4584, 2021. 7

[20] Guillaume Laffaye, Michael Phomsoupha, and Frédéric Dor.
Changes in the Game Characteristics of a Badminton Match:
A Longitudinal Study through the Olympic Game Finals
Analysis in Men’s Singles. Journal of Sports Science &
Medicine, 14(3):584–590, 2015. 2

[21] P. Liu and J. Wang. MonoTrack: Shuttle trajectory re-
construction from monocular badminton video. In 2022
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 3512–3521, New
Orleans, LA, USA, 2022. IEEE. 2, 3, 5, 7

[22] J. Matas, C. Galambos, and J. Kittler. Robust Detection of
Lines Using the Progressive Probabilistic Hough Transform.
Computer Vision and Image Understanding, 78(1):119–137,
2000. 4

[23] Juergen Metzler and Frank Pagel. 3D Trajectory Reconstruc-
tion of the Soccer Ball for Single Static Camera Systems. In
International Conference on Machine Vision Applications,
Kyoto, Japan, 2013-05-20/2013-05-23. 2

[24] Katharina Muelling, Abdeslam Boularias, Betty Mohler,
Bernhard Schölkopf, and Jan Peters. Learning strategies in
table tennis using inverse reinforcement learning. Biological
Cybernetics, 108(5):603–619, 2014. 1

[25] B. T. Naik, M. F. Hashmi, and N.D. Bokde. A Compre-
hensive Review of Computer Vision in Sports: Open Issues,
Future Trends and Research Directions. Applied Sciences,
12(9):4429, 2022. 1

[26] Edwin Olson. Apriltag: A robust and flexible visual fiducial
system. In 2011 IEEE International Conference on Robotics
and Automation, pages 3400–3407, 2011. 2

[27] Adrian Penate-Sanchez, Juan Andrade-Cetto, and Francesc
Moreno-Noguer. Exhaustive linearization for robust camera
pose and focal length estimation. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 35(10):2387–2400,
2013. 3

5829

[28] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick,
Kaiming He, and Piotr Dollár. Designing Network Design
Spaces. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 10425–10433, 2020.
4

[29] Arjun Raj, Lei Wang, and Tom Gedeon. TrackNetV4: En-
hancing Fast Sports Object Tracking with Motion Attention
Maps, 2024. 2

[30] Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang
Hu, Chaitanya Ryali, Tengyu Ma, Haitham Khedr, Roman
Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junt-
ing Pan, Kalyan Vasudev Alwala, Nicolas Carion, Chao-
Yuan Wu, Ross Girshick, Piotr Dollár, and Christoph Feicht-
enhofer. Sam 2: Segment anything in images and videos,
2024. 4

[31] Soichiro Sato and Masaki Aono. Leveraging human pose
estimation model for stroke classification in table tennis. In
Working Notes Proceedings of the MediaEval 2020 Work-
shop, Online, 14-15 December 2020. CEUR-WS.org, 2020.
7

[32] L. Shen, Q. Liu, L. Li, and H. Yue. 3D reconstruction of ball
trajectory from a single camera in the ball game. In Proceed-
ings of the 10th International Symposium on Computer Sci-
ence in Sports (ISCSS), pages 33–39, Cham, 2016. Springer
International Publishing. 2, 3, 5, 7

[33] Carole H. Sudre, Wenqi Li, Tom Vercauteren, Sebastien
Ourselin, and M. Jorge Cardoso. Generalised dice overlap as
a deep learning loss function for highly unbalanced segmen-
tations. In Deep Learning in Medical Image Analysis and
Multimodal Learning for Clinical Decision Support, pages
240–248, Cham, 2017. Springer International Publishing. 4

[34] N. Sun, Y. Lin, S. Chuang, T. Hsu, D. Yu, H. Chung, and T.
İk. TrackNetV2: Efficient Shuttlecock Tracking Network. In
2020 International Conference on Pervasive Artificial Intel-
ligence (ICPAI), pages 86–91, 2020. 2

[35] Satoshi Suzuki and KeiichiA be. Topological structural anal-
ysis of digitized binary images by border following. Com-
puter Vision, Graphics, and Image Processing, 30(1):32–46,
1985. 4

[36] S. Tamaki and H. Saito. Reconstruction of 3D Trajecto-
ries for Performance Analysis in Table Tennis. In 2013
IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops, pages 1019–1026, 2013. 2

[37] S. Tarashima, M. Haq, Y. Wang, and N. Tagawa. Widely
applicable strong baseline for sports ball detection and track-
ing. In 34th British Machine Vision Conference 2023, BMVC
2023, Aberdeen, UK, November 20-24, 2023. BMVA, 2023.
2

[38] J. Tebbe, Y. Gao, M. Sastre-Rienietz, and A. Zell. A ta-
ble tennis robot system using an industrial kuka robot arm.
In Pattern Recognition: 40th German Conference, GCPR
2018, Stuttgart, Germany, October 9-12, 2018, Proceedings
40, pages 33–45. Springer, 2019. 2

[39] Andreas Wächter and Lorenz T. Biegler. On the implementa-
tion of an interior-point filter line-search algorithm for large-
scale nonlinear programming. Mathematical Programming,
106:25–57, 2006. 7

[40] Ping Wang, Qian Zhang, Yinli Jin, and Feng Ru. Studies and
simulations on the flight trajectories of spinning table tennis
ball via high-speed camera vision tracking system. Proceed-
ings of the Institution of Mechanical Engineers, Part P, 233
(2):210–226, 2019. 6

[41] Yuxin Wang, Zhiyong Sun, Yongle Luo, Haibo Zhang, Wen
Zhang, Kun Dong, Qiyu He, Qiang Zhang, Erkang Cheng,
and Bo Song. A Novel Trajectory-Based Ball Spin Estima-
tion Method for Table Tennis Robot. IEEE Transactions on
Industrial Electronics, pages 1–11, 2023. 5, 6

[42] P. Wong, H. Myint, L. Dooley, and A. Hopgood. A multi-
view automatic table tennis umpiring framework. Pro-
ceedings of the Institution of Mechanical Engineers, Part
P: Journal of Sports Engineering and Technology, page
175433712311714, 2023. 1, 2

[43] Changchang Wu. P3.5P: Pose estimation with unknown fo-
cal length. In 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2440–2448, 2015. 3

[44] Erwin Wu, Florian Perteneder, and Hideki Koike. Real-time
Table Tennis Forecasting System based on Long Short-term
Pose Prediction Network. In SIGGRAPH Asia 2019 Posters,
pages 1–2, New York, NY, USA, 2019. Association for Com-
puting Machinery. 1

[45] Xinguo Yu, Xinguo Yu, Nan Jiang, Nianjuan Jiang, Loong-
Fah Cheong, Loong-Fah Cheong, Hon Wai Leong, Wai
Leong, Xiaogang Yan, and Xin Yan. Automatic camera
calibration of broadcast tennis video with applications to
3D virtual content insertion and ball detection and track-
ing. Computer Vision and Image Understanding, 113(5):
643–652, 2009. 2

[46] Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiao-
gang Xu, Jiashi Feng, and Hengshuang Zhao. Depth any-
thing v2. arXiv:2406.09414, 2024. 4

[47] Gabriel Van Zandycke and Christophe De Vleeschouwer.
3D Ball Localization From A Single Calibrated Image. In
2022 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), pages 3471–3479.
IEEE Computer Society, 2022. 2

[48] Haotian Zhang, Ye Yuan, Viktor Makoviychuk, Yunrong
Guo, Sanja Fidler, Xue Bin Peng, and Kayvon Fatahalian.
Learning physically simulated tennis skills from broadcast
videos. ACM Trans. Graph. 1

[49] Ce Zheng, Wenhan Wu, Chen Chen, Taojiannan Yang, Sijie
Zhu, Ju Shen, Nasser Kehtarnavaz, and Mubarak Shah. Deep
Learning-based Human Pose Estimation: A Survey. ACM
Comput. Surv., 56(1):11:1–11:37, 2023. 1

[50] Yinqiang Zheng and Laurent Kneip. A Direct Least-Squares
Solution to the PnP Problem with Unknown Focal Length.
In 2016 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 1790–1798, Las Vegas, NV,
USA, 2016. IEEE. 3

[51] Yinqiang Zheng, Shigeki Sugimoto, Imari Sato, and
Masatoshi Okutomi. A General and Simple Method for
Camera Pose and Focal Length Determination. In 2014 IEEE
Conference on Computer Vision and Pattern Recognition,
pages 430–437, Columbus, OH, USA, 2014. IEEE. 3

[52] Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima
Tajbakhsh, and Jianming Liang. UNet++: A Nested U-

5830

Net Architecture for Medical Image Segmentation. In Deep
Learning in Medical Image Analysis and Multimodal Learn-
ing for Clinical Decision Support, pages 3–11, Cham, 2018.
Springer International Publishing. 4

[53] Wentao Zhu, Xiaoxuan Ma, Zhaoyang Liu, Libin Liu, Wayne
Wu, and Yizhou Wang. Motionbert: A unified perspective
on learning human motion representations. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, 2023. 7

5831

	Introduction
	Related Work
	Single View Camera Calibration
	Ball Tracking
	3D Reconstruction

	Camera Calibration
	Calibration
	Segmentation Model
	Feature extraction

	Trajectory Segmentation
	Bouncing Position

	3D Reconstruction
	Physics Model
	Reconstruction

	3D Pose Estimation
	Experiments
	Camera Calibration
	3D Ball Trajectory Reconstruction Benchmark
	Limitations

	Conclusion

