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Supplementary Material

A. Camera Parameters Network Architecture
See Figure 1 for a detailed diagram of the camera parame-
ters prediction model architecture.

B. Pitch Localization
Accurate pitch localization is essential for mapping athletes
on the image to their 3D positions on the pitch. Our method
employs a multi-stage approach that first leverages a custom
SegFormer model to generate an initial estimate of the cam-
era parameters. Following this, a ResNet50-based segmen-
tation network detects keypoints on the field, such as inter-
sections of pitch lines with grass lines. These keypoints are
then used in an optimization process to refine the estimated
parameters, ensuring a more precise camera alignment with
the real-world pitch.

You can find visualization of the pitch localization
pipeline in Figure 2.

C. Camera Parameters Dataset
The histograms in Figure 3 compare key distributions, such
as camera position coordinates (X, Y, Z), field of view, pan,
and tilt angles. The real dataset is naturally constrained
by physical camera placements, while the synthetic dataset
spans a wider range of configurations, enabling the model
to learn robust representations. You can see examples of
synthetic images in Figure 4.

D. Camera Parameters Loss
Given the camera parameters params = {I,R, t}, we de-
fine a mapping function P = F (params) that transforms
3D world coordinates X into 3D camera coordinates in Nor-
malized Device Coordinates (NDC) space:

xcamera = P (X) = IR(X − t),

where:
• X is the 3D world coordinates [X,Y, Z]T .
• I is the intrinsic matrix, encoding focal length and prin-

cipal point (which is set to zero in the case of NDC coor-
dinates).

• R is the rotation matrix representing the camera’s orien-
tation.

• t is the translation vector representing the camera’s posi-
tion.

• xcamera is the resulting 3D point [xc, yc, zc]
T in NDC

space.

This 3D-to-3D transformation (from world coordinates
to Normalized Device Coordinates, or NDC) offers three
key advantages: (1) it ensures resolution invariance by de-
coupling the loss from the input image size, (2) it elimi-
nates the need for a perspective divide, thereby maintaining
a smooth and stable gradient flow during optimization, and
(3) it retains invertibility, enabling consistent reconstruction
of 3D world coordinates from camera coordinates.

The inverse mapping is derived as follows. Starting from
the forward transformation:

xcamera = IR(X − t),

we derive the inverse as follows:
• Multiply both sides by (IR)−1 to isolate X − t:

(IR)−1xcamera = X − t.

• Solve for X by adding t to both sides:

X = (IR)−1xcamera + t.

• Since R is an orthogonal matrix, R−1 = RT , giving the
final expression:

X = RT I−1xcamera + t.

Thus, our inverse mapping is:

P inv(xcamera) = RT I−1xcamera + t.

This formulation plays a critical role in our training loss,
allowing symmetric penalization of both forward and in-
verse transformations between world and NDC camera co-
ordinates.

E. Camera parameters data preparation
Figure 5 illustrates the projection of keypoints and coordi-
nate heatmaps into image space using a homography matrix
computed from the camera parameters.



Figure 1. Camera Parameters Model. This figure illustrates the architecture of our custom SegFormer-based camera parameter estimator.
The model consists of an encoder-decoder structure, where the encoder is based on the SegFormer architecture and the decoder includes
two heads: one for predicting camera parameters (position, orientation, and field of view) and another for generating UV heatmaps.

Figure 2. The pipeline estimates camera parameters by combining a custom SegFormer model for initial predictions and a ResNet50-based
segmentation for keypoint detection. The parameters are refined using keypoint alignment to obtain the final camera pose.



Figure 3. Real and synthetic data statistics. The histograms compare the distributions of key camera parameters and coordinate values
between real and synthetic datasets. The X, Y, and Z coordinates represent camera positions with respect to the center of the football
field, which serves as the origin (0,0,0). The FIFA standard field dimensions are 105 meters (length) × 68 meters (width). The field of
view (FoV), pan, and tilt angles illustrate differences in camera configurations across datasets, while roll is fixed at 0 for all images. The
synthetic data (blue) shows a broader and more uniform distribution, while the real data (orange) exhibits a more concentrated range of
values, indicating the constrained nature of real-world camera placements.



(a) FoV: 0.86, cx: -48.19, cy: 72.27, cz: -13.31, Pan: -0.06, Tilt:
1.35, Roll: 0.0

(b) FoV: 0.47, cx: -11.75, cy: 74.62, cz: -34.18, Pan: -0.12, Tilt:
1.16, Roll: 0.0

(c) FoV: 0.78, cx: 26.77, cy: 44.59, cz: -34.42, Pan: -0.71, Tilt:
1.23, Roll: 0.0

(d) FoV: 1.29, cx: 57.28, cy: 94.18, cz: -39.87, Pan: -0.49, Tilt:
1.25, Roll: 0.0

Figure 4. Examples from the synthetic dataset with corresponding camera parameters.



Figure 5. Keypoints, Y-coordinate heatmap (bird’s-eye view), and X-coordinate heatmap are projected into image space using a homogra-
phy matrix derived from the camera parameters.
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