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5.1. Evaluation Metrics
We evaluate our approach using two main categories of
metrics: pose metrics and physics metrics.
Pose Metrics. These measure pose accuracy and smooth-
ness:
• WA-MPJPE (World-Aligned MPJPE). In some works,

this refers to an MPJPE calculation where the predicted
and ground-truth poses are aligned in the global (or
“world”) coordinate system by a single rigid transforma-
tion (often estimated via a Procrustes-like method) once
for the entire sequence. It does not allow a different trans-
formation per frame.

• W-MPJPE (World PA First-MPJPE). This measures
MPJPE after aligning only the first frame of the prediction
and ground truth in the global coordinate system. The re-
maining frames are evaluated without further alignment,
highlighting any drift that occurs over time.

• PA-MPJPE (Procrustes Aligned MPJPE). Each frame of
the predicted pose is rigidly aligned to the corresponding
ground-truth pose on a per-frame basis before computing
MPJPE. This alignment factors out any frame-by-frame
rigid transformations, emphasizing errors in limb posi-
tions or shape.

• Acceleration Error (Acc. Error). Evaluates discrep-
ancies in acceleration between the predicted motion and
ground truth, indicating whether the motion is jittery or
overly smoothed.

Physics Metrics. These assess how physically plausible a
motion sequence is:
• Foot Skating (Skating). Evaluates the extent to which

feet slide on the ground when they should remain still.
• Ground Penetration (Gnd Pen.). Measures whether any

body part intersects or penetrates the ground plane.
• Inter-Person Penetration (Pen.). Assesses collisions

among different individuals by computing signed distance
function (SDF) values. For each person, the SDF values
from penetrating vertices of others are accumulated over
all frames and averaged per person. This metric is mea-
sured in millimeters, whereas the other physics metrics
are measured in meters.
Below are further details on the individual metrics:

5.1.1. Percentage of Correct Parts (PCP)
The PCP metric quantifies the percentage of body parts
whose endpoints are correctly localized. Let the ground-
truth body part endpoints be s2 and e2, and let s= and e= be
their estimated counterparts. The part is considered correct
if:

|s � s2 | + |e � e2 |  |s= � e= | . (8)

5.1.2. Mean Per Joint Position Error (MPJPE)
The MPJPE metric computes the mean Euclidean distance
between predicted and ground-truth 3D joint positions:
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5.1.3. Foot Floating and Sliding
Foot Floating. We compare the vertical position of the
foot in the predicted motion to the ground truth:
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Foot Sliding. We compare the foot’s horizontal velocity
(on the XY plane) in the predicted motion to the ground
truth:
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5.1.4. Motion Smoothness
Smoothness is measured by (1) computing MPJPE on a
15-joint reduced skeleton plus the root, and (2) comparing
keypoint velocities:
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5.2. Ablation Study
We conduct ablation experiments to illustrate the impact of
key components in our framework.

Number of Views. Reducing camera views typically de-
grades 3D reconstruction due to weaker triangulation. Nev-
ertheless, our method retains robustness in Table 6, even
when views are sparse.

Triangulation Filtering. Spline smoothing and an Ex-
tended Kalman Filter (EKF) on keypoints significantly de-
noise the initial linear triangulation, improving subsequent
kinematic optimization (Table 6).

Prior (GMM + Vposer). A Gaussian Mixture Model
(GMM) prior in combination with Vposer narrows the pose
parameter search space to more plausible solutions.



Table 6. Ablation Study on Shelf Dataset using PCP metric.

Method Actor 1 Actor 2 Actor 3 Average

Baseline 99.8 97.6 98.6 98.6
Using 3 Views 98.3 98.1 98.6 98.3
Using 2 Views 97.6 48.1 96.4 80.7

No Filtering for Triangulation 99.8 94.9 97.9 97.5
No Prior 99.8 96.2 98.1 98.0

No 2D loss 91.6 76.2 81.2 83.0
No 3D loss 99.8 96.2 98.1 98.0

No pose regularization 99.8 95.7 98.5 98.0

Table 7. Configuration of the Humanoid used in physics optimiza-
tion.

Joint Force Range Angle Range (rad) Joint Type No. Axes Damping
Head -40 to 40 -0.524 to 0.524 Hinge 3 20

Clavicle -80 to 80 -0.349 to 0.349 Hinge 2 20
Femur -300 to 300 -2.792 to 1.221 Hinge 3 20
Tibia -160 to 160 0.01 to 2.967 Hinge 1 16
Foot -120 to 120 -0.785 to 1.222 Hinge 2 12
Hand -20 to 20 -1.57 to 1.57 Hinge 2 1

Humerus -120 to 120 -1.571 to 1.571 Hinge 3 6
Lower Back -300 to 300 -0.523 to 0.523 Hinge 3 24
Lower Neck -120 to 120 -0.5236 to 0.5236 Hinge 3 40

Radius -90 to 90 -2.967 to 0.174 Hinge 1 5
Toes -20 to 20 1.570 to 0.349 Hinge 1 1
Wrist -20 to 20 -3.14159 to 0 Hinge 1 1
Root - - Free - -

Regularization. Pose regularization encourages smooth
transitions between frames, reducing sudden jumps or un-
natural artifacts.

5.3. CMU Humanoid Details
Table 7 shows the joint configurations for the CMU hu-
manoid employed in physics optimization. Although the
physics engine treats joints with three rotation axes as ball
joints, we constrain these axes to mimic the behavior of three
consecutive hinge joints, providing finer rotational control.

In summary, our pipeline combines noise-robust triangu-
lation, strong pose priors, and physics-based optimization
to yield smooth, physically plausible human motions under
diverse scenarios, including sparse camera setups and noisy
estimates.
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