
Towards Ball Spin and Trajectory Analysis in Table Tennis Broadcast Videos via
Physically Grounded Synthetic-to-Real Transfer

Supplementary Material

A. Further Architecture Details

MLP li

(a) Context-Free Method

MLP li

(b) Concatenation Method

MLP

MLP

MLP

Transform
er

table13

table1

ball li

(c) Dynamic Method

Figure 7. Token embedding methods. Input to the embedding
layers are the 2D coordinates of the ball and the 13 table keypoints.
The output is the location token li. The embedding layer is applied
for each time step ti separately.

Figure 7 provides an overview of the different token em-
bedding strategies utilized in our model. Each method pro-
cesses the 2D coordinates of the ball along with 13 table
keypoints to generate the location token li at time ti. The
embedding operation is applied separately for each time
step ti.
• Context-Free Method: The context-free method directly

embeds the ball coordinates via a multilayer perceptron
(MLP) without using any table keypoints.

• Concatenation Method: The 2D coordinates of all 14
points are concatenated into a single vector. This vector
is then transformed into a location token via an MLP.

• Dynamic Method: Instead of direct concatenation, a
small transformer encoder processes the table keypoints
and condenses their information into the ball position to-
ken. This token is then used as location token li, the other
tokens are discarded.

To evaluate model performance across different architec-
tural complexities, we vary the number of transformer lay-
ers L, the number of attention heads H , and the embedding
dimension d. Table 4 summarizes the configurations ex-

plored.

Size Layers L Heads H Embedding Dimension d Number of Parameters
Small 8 4 32 0.06× 106

Base 12 4 64 0.3× 106

Large 16 4 128 1.6× 106

Huge 16 8 192 3.2× 106

Table 4. Transformer architecture variants. The number of train-
able parameters is calculated for the model with connect-stage
SPT architecture and concatenation token embedding module.

B. Annotation Details

For each trajectory, we annotate the 13 table keypoints in
the first frame. Since the camera remains static through-
out each video, these annotations are consistently used for
all subsequent frames within the trajectory. The annotated
keypoints are illustrated in Figure 8. Annotating the spin di-

Figure 8. The 13 table keypoints (red circles) and the ball position
(purple circle) are highlighted.

rection is particularly challenging, as the spin is not directly
observable in broadcast footage. To infer the spin type, we
analyze the paddle’s orientation at the moment of impact.
• Topspin: If the paddle is angled towards the table, the

shot is labeled as topspin. This is illustrated in Figure 9a.
• Backspin: If the paddle is angled away from the table, the

shot is labeled as backspin. This is illustrated in Figure
9b.

This annotation approach provides a practical method for
inferring spin direction despite the limitations of broadcast
video data.

C. Regressing camera matrices

Although our method operates in an end-to-end manner
without requiring camera calibration as input, the intrinsic
and extrinsic camera matrices are necessary for computing



(a) Topspin

(b) Backspin

Figure 9. Example frames for the annotation of the spin direction.
If the paddle is facing the table (a), the shot is annotated as topspin.
If the paddle is facing away from the table (b), the shot is annotated
as backspin.

the 2D reprojection error. For each trajectory, we manu-
ally annotate the 13 table keypoints once. Since the corre-
sponding 3D world coordinates are known due to standard-
ized table sizes in professional matches, the camera matri-
ces can be estimated by minimizing the reprojection error
of these 13 points. However, this regression process is in-
herently unstable, and even small annotation errors can lead
to significant inaccuracies in the estimated camera matrices.
To mitigate this issue, we employ the RANSAC algorithm
[16] to robustly filter out erroneous annotations. In each
RANSAC iteration, we randomly select six non-planar key-
points and compute an initial estimate of the camera matri-
ces using the Direct Linear Transformation (DLT) algorithm
[1]. This initial estimate is then refined using the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm
[5]. With the refined matrices, we determine the number of
inliers by checking the reprojection error. A point is classi-
fied as an inlier if the reprojected 3D point is within 3 pixels
of the corresponding 2D annotation. This procedure is re-
peated 100 times, and the setting with the highest number
of inliers is selected. Using all identified inliers, we com-
pute the final camera matrices by first applying the DLT al-
gorithm and subsequently refining the result with the BFGS
optimization. The RANSAC-based approach is essential for
mitigating the impact of slight errors in the 2D annotations
and obtaining accurate camera matrices. We highlight that

our model, which does not require camera calibration, is
very robust to minor errors in the 2D input, highlighting the
benefits of implementing an end-to-end approach.

D. Augmentation Details

Figure 10. A trajectory sampled from 4 different camera per-
spectives. During training, we transform the trajectory with such
randomly sampled camera parameters to introduce different view-
points.

During training, we randomly sample plausible camera
parameters to simulate diverse camera perspectives, in-
creasing the diversity of the model inputs and ensuring that
the model generalizes well across different viewpoints. Ex-
amples of trajectories visualized from various sampled cam-
era parameters are shown in Figure 10.
In the synthetic dataset, we do not only store the ball’s 3D
position at each time step but also record intermediate po-
sitions. For these intermediate positions, we employ a ”vir-
tual” framerate of 500 Hz, which is ten times higher than
the actual framerate. This allows us to accurately simulate
motion blur in a physically consistent manner. Rather than
using the exact ball position at a given timestamp, we ran-
domly select a point within a temporal window around each
frame. For the experiments in this paper, we define this win-
dow such that the selected point has a timestamp within a
maximum deviation of 0.4 ∗ 1

50Hz . Motion blur is applied
not only to the 2D ball positions but the 3D ground truth
positions are shifted accordingly.
The sudden end augmentation is designed to simulate sce-
narios in which the opposing player interferes, leading to an
abrupt termination of the trajectory. For each trajectory, we
remove a randomly selected number of coordinates at the
end, however, we ensure that the trajectory always includes
the bounce on the table. This augmentation is applied with
a probability of 50% during training, allowing the model
to learn from complete trajectories while also adapting to



cases where the ball’s motion is unexpectedly interrupted.
The Gaussian blur augmentation is implemented by intro-
ducing random noise to the 2D ball position and the 2D
table keypoints. The noise is sampled from a Gaussian dis-
tribution with a standard deviation of 2 pixels in both the x-
and y-directions, effectively simulating annotation inaccu-
racies.

E. Further Experiments
This section presents additional experiments that provide
deeper insights into the model’s behavior. All experiments
are based on the best model, which is described in Section
6.4. It uses the concatenation token embedding method, the
connect-stage SPT architecture, and all data augmentations.

E.1. Spin Prediction Coordinate System

Synthetic Real
Method ∆ω⃗ ∆r⃗world acc F1 ROC-AUC ∆r⃗img

world 48.7 Hz 5.5 cm 92.0 % 0.917 0.990 0.19 %
ball 48.3 Hz 5.4 cm 94.0 % 0.938 1.000 0.22 %

Table 5. Comparison of different spin prediction coordinate sys-
tems. The best results on the real data are highlighted in bold.

In Section 3.2, we discussed that while the trajectory is an-
alyzed in the world coordinate system, the spin is evalu-
ated in the ball coordinate system. According to Equation
2, the predicted spin can be transformed between coordinate
systems. Thus, there are two approaches for predicting the
spin:
• The network is trained to predict the spin in the world

coordinate system, and the predicted trajectory is used in
Equation 2 to transform the spin into the ball coordinate
system.

• The network is trained to directly predict the spin in the
ball coordinate system, eliminating the need for any trans-
formation.

Since the first approach relies on the predicted trajectory
for coordinate transformation, it may introduce additional
errors. Conversely, using the same coordinate system for
both trajectory and spin could simplify training, as the net-
work does not need to learn the transformation.
Table 5 compares both approaches. Training the network
directly in the ball coordinate system results in slightly bet-
ter performance across all spin-related metrics. However,
trajectory prediction benefits from predicting the spin in the
world coordinate system. Overall, the differences are mi-
nor. Choosing the coordinate system depends on whether
trajectory accuracy or spin accuracy is more critical for the
specific application. This allows for flexibility in the model
design, enabling it to be tailored to the specific requirements
of the task at hand.

E.2. Positional Encoding

Synthetic Real
Method ∆ω⃗ ↓ ∆r⃗world ↓ acc ↑ F1 ↑ ROC-AUC ↑ ∆r⃗img ↓
rotary 48.7 Hz 5.5 cm 92.0 % 0.917 0.990 0.19 %
added 52.6 Hz 5.8 cm 90.0 % 0.897 0.987 0.26 %

Table 6. Comparison of different positional encodings. The best
results on the real data are highlighted in bold.

The standard approach for incorporating positional infor-
mation in transformers is by adding a fixed sinusoidal po-
sitional encoding to the token embeddings. However, our
model utilizes a rotary positional encoding, which is com-
monly used in language models. Table 6 compares both
methods. As the rotary positional encoding achieves better
performance across all metrics, we conclude that it is more
suitable for our task.

E.3. Loss Target

Method Synthetic Real
Ltrajectory Lspin ∆ω⃗ ↓ ∆r⃗world ↓ acc ↑ F1 ↑ ROC-AUC ↑ ∆r⃗img ↓

✓ ✓ 48.7 Hz 5.5 cm 92.0 % 0.917 0.990 0.19 %
✕ ✓ 60.6 Hz - 78.0 % 0.769 0.890 -
✓ ✕ - 5.5 cm - - - 0.22 %

Table 7. Comparison of joint prediction with individual models for
each task. ✓ indicates which loss function is used during training,
while ✕ indicates the absence of the specific loss. The best results
on the real data are highlighted in bold.

Our model is designed to jointly predict both trajectory
and spin. For training both task, we simply sum the two
loss functions in Equation 7. In this section, we exam-
ine whether joint prediction is beneficial or if the two tasks
should be handled by separate models.
Table 7 compares joint prediction with separate models.
The results clearly show that joint prediction outperforms
the separate models across all metrics. This suggests that
the network extracts useful information from one task that
enhances the other. Thus, joint prediction is an effective
approach.

E.4. Model Size

Synthetic Real
Method ∆ω⃗ ↓ ∆r⃗world ↓ acc ↑ F1 ↑ ROC-AUC ↑ ∆r⃗img ↓
small 64.9 Hz 10.7 cm 92.0 % 0.917 0.956 0.29 %
base 51.0 Hz 6.2 cm 90.0 % 0.895 0.998 0.25 %
large 48.7 Hz 5.5 cm 92.0 % 0.917 0.990 0.19 %
huge 48.8 Hz 5.1 cm 86.0 % 0.850 0.971 0.17 %

Table 8. Comparison of different model sizes. The best results on
the real data are highlighted in bold.



Table 8 compares different model sizes, which are defined
in Table 4. All models demonstrate good performance in
spin prediction. However, increasing the model size im-
proves trajectory prediction accuracy. Additionally, the
spin prediction performance of the largest model is slightly
worse than that of the other models, possibly due to over-
fitting. Therefore, we identify the large model as the best
compromise between spin prediction and trajectory predic-
tion.

F. Reproducibility and Open Resources
To facilitate reproducibility and further research, we pro-
vide the following resources:
• Synthetic trajectories used for training.
• Annotations for the real-world dataset.
• Trained model weights.
• Source code for both training and inference.
All resources are publicly available at
https://kiedani.github.io/CVPRW2025/.


