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7. Anthropometric Measurements

The selection of the anthropometric measurements is
mainly adopted from AnthroNet [28]. In total, 36 measure-
ments are selected, which can be divided into 23 lengths
and 13 circumferences. All measurements are taken based
on the standard SMPL-X T-pose. The reference landmarks
are chosen by matching the vertices on the default mesh
with the landmarks defined by the anthropometric survey of
the U.S. army personnel [14]. A visualization of the land-
marks can be found in Figure 4 and 5. The lengths are cal-
culated by computing the Euclidean distance between two
landmarks or the difference along the coordinate axis point-
ing upwards for certain heights. The lenghts are visualized
in Figure 6 and 7. Table 9 lists the enclosing landmarks for
each length. To measure the circumferences, we adopt the
code from [2]. For each measurement, a plane is created, the
intersection between the mesh and the plane are extracted
and the convex hull of the result is calculated. During this
process, the mesh is restricted to the body part to be mea-
sured. A visualization of the circumferences can be found in
Figure 8 and a list of the landmarks and the normal vectors
spanning the plane in Table 6.
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Figure 4. Visualization of the used landmarks with a standard T-
pose SMPL-X mesh in front view.
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Figure 5. Visualization of a subset of the used landmarks in side
view.

Idx | Circumference Normal Vector Position
1 Waist Up Belly button
2 Chest Up Nipple
3 Hip Up Pubic bone
4 Head Up Head temple
5 Neck Spine to head Adam’s apple
6/7 Upper Arm Shoulder to elbow Center of the bicep
8/9 Forearm Elbow to wrist Widest point of the forearm
10/11 Thigh Up Center of the thigh
12/13 Calf Up Widest point of the calf

Table 6. Definitions of circumferences by landmarks and the nor-
mal vector spanning the plane.

8. 3D Human Shape Ground Truth Analysis

We further analyze the GT shape consistency for the com-
mon datasets Human3.6M [16] and MPI-INF-3DHP [22].
We find that for Human3.6M, the bone lengths derived from
the 3D annotations are fixed, but not for MPI-INF-3DHP.
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Figure 6. Visualization of used lengths with a standard T-pose
SMPL-X mesh in side view.
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Figure 7. Visualization of used lengths with a standard T-pose
SMPL-X mesh in front view.
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Figure 8. Visualization of used circumferences with a standard T-
pose SMPL-X mesh in front view.

Therefore, we do not report the deviations of 3D joint an-
notations for Human3.6M, since there are none. We fur-
ther evaluate the SMPL-X annotations for both datasets pro-
vided by Neural Annot [24] which are used by HME models
as GT for training. See Tables 7, 8 for details.

9. Evaluating A2B Models

We measure two types of errors to evaluate the performance
of our A2B models. The first type (8 error) shows the er-
ror if we take the GT 3 parameters, derive anthropomet-
ric measurements (B2A), input them into the A2B models
and evaluate the MSE of the predicted S parameters. The
second type (A error) calculates B2A from the predicted 3

SMPL-X annotations
Measure o .o

3D joint annotations
Measure o r.o

head 0.19 1.03%  2.08% head 021 0.75% 4.87%
hip width | 022 0.89%  1.80% hipcirc. | 1.16 1.16% 9.13 %
forearm | 0.21 0.87% 1.77% forearm | 045 1.80% 9.75%
upperarm | 0.29 0.90%  1.82% arm 0.83 159% 8.19%
lowerleg | 0.60 1.49%  3.06% lowerleg | 1.05 2.56% 11.54%
thigh 383 791% 41.90% thigh 077 2.02% 9.47%
height 276 1.56% 8.24%
[ param. | 0.18

r. range r. range

Table 7. GT data analysis for MPI-INF-3DHP [22]. Bone length
analysis based on the 3D joint locations (left) and on SMPL-X an-
notations by NeuralAnnot (right). Standard deviation o, relative
standard deviation & and relative range m#‘g””“ of anthropo-
metric measurements are reported. Standard deviations are given
in cm, despite for the 5 parameters. The values are averaged be-
tween left and right body parts and between all persons in of each
dataset. The 3 parameter standard deviation is averaged over all 3

parameters.

SMPL-X annotations
Measure o .o r. range

head 041 151% 10.28%
hipcirc. | 1.24 1.19% 8.90%

forearm | 0.83 3.30% 27.93%
arm 0.77 2.58% 22.88%
lowerleg | 0.43 1.18% 12.20%

thigh 066 127% 9.43%
height 340 2.06% 15.66%
[ param. | 0.20

Table 8. GT data analysis for Human3.6M [16]: Analysis of
SMPL-X annotations by NeuralAnnot. Standard deviation o, rel-
ative standard deviation ﬁ and relative range w of an-
thropometric measurements are reported. Standard deviations are
given in cm, despite for the 3 parameters. The values are averaged
between left and right body parts and between all persons in of
each dataset. The [ parameter standard deviation is averaged over

all 8 parameters.

parameters and evaluates the mean difference between the
GT and predicted anthropometric measurements (all 36) in
mm. These evaluations are a kind of cycle consistency eval-
uation for A2B and B2A. Figure 9 provides a visualization
of the evaluation scheme. The part that is also included in
the training is highlighted with thicker arrows. The anthro-
pometric error is only used during evaluation.

GT Anthropometric

ETEE Measurements A

[} Parameter Error

. Anthropometric Error
(Train Loss) P

A2B Anthropometric
Measurements A

A2B Shape f3

Figure 9. Visualization of the A2B evaluation and training proce-
dures. The training part is highlighted with thicker arrows. During
training, the 8 parameter error is used. For evaluations, the 5 pa-
rameter error and the anthropometric error are calculated.



Idx Length Name From To

1 Shoulder width Left shoulder tip (left acromion) Right shoulder tip
2 Back torso height Cervicale Back belly button
3 Front torso height Suprasternale (top of the breastbone) Belly button
4 Head Head top Cervicale
5 Midline neck Chin Suprasternale
6 Lateral neck Center between the ears Cervicale
7 Height Head top Center between heels
8/9 Hand right/left Center between middle and ring finger  Stylion rotated downwards
10/11 Arm right/left Acromion Wrist
12/13 Forearm right/left Elbow Stylion rotated downwards
14/15 Thigh right/left Outer point at the femur (Trochanterion) Knee cap
16/17 Calf right/left Knee cap Ankle
18/19 | Foot width right/left Small toe Big toe
20/21 | Heel to ball right/left Heel Ball
22/23 | Heel to toe right/left Heel Big toe

Table 9. Definitions of lengths by their two enclosing landmarks.

In the main paper, we test our A2B models on the
AGORA [26] dataset and randomly sampled body shapes.
Since AGORA is a synthetic dataset, it might not reflect
the real world. The same holds for randomly sampled body
shapes. Therefore, we additionally test our best A2B mod-
els on the real-world SSP-3D dataset [33] which consists of
diverse body shapes. We display the results in Table 10.

& error of 3 [1072] & error of A [mm|]
m f n m f n

NN | 1.73 097 2.74 | 0.634 0.803 0.968
SVR | 0.13 0.0039 0.066 | 0.167 0.114 0.182

Table 10. Results of our A2B models on the SSP-3D dataset using
n(eutral), m(ale) and f(emale) meshes.

All A2B models accurately estimate the diverse real-
world body shapes with low error.

10. Keypoint Selection for fit3D

We use the fit3D [12] dataset for our evaluations, since this
is the only sports dataset with public SMPL-X annotations.
We evaluate on the SMPL-X joints, since these are triv-
ial to obtain from SMPL-X meshes and there is no regres-
sor available for the fit3D annotated 3D joints. SMPL-X
has 144 defined joints. Since our focus is mainly on the
body and not on the hands and face, we remove most of
these joints. In the end, we select a subset of 37 SMPL-
X joints: pelvis, left hip, right hip, spinel, left knee, right
knee, spine2, left ankle, right ankle, spine3, left foot, right
foot, neck, left collar, right collar, head, left shoulder, right
shoulder, left elbow, right elbow, left wrist, right wrist, left
index, left thumb, right index, right thumb, left big toe, left
small toe, left heel, right big toe, right small toe, right heel,
right eye, left eye, right ear, left ear, nose.

11. Generation of Pseudo GT Anthropometric
Measurements

As we do not have access to the athletes of ASPset and fit3d
to obtain real anthropometric measurements, we need an al-
ternative to simulate this process. For ASPset, as a first step,
we run IK on the GT 3D joint locations. From the generated
meshes, we obtain the necessary anthropometric parameters
with B2A. Then, we use the median values of these mea-
surements as the GT anthropometric values. We call these
parameters pseudo GT throughout this paper, since this is
not directly the GT, but obtained from IK executed on the
GT 3D joint locations and the B2A computation from the
created meshes. These parameters are used in this paper to
generate the pseudo GT 3 parameters by A2B prediction.

We do not have access to the athletes of the fit3D dataset
either. Therefore, we need some kind of GT data to mimic
measurements. Obviously, there is no GT available for the
official test set evaluation on the evaluation server. We
therefore split the official training dataset into a training,
validation, and test set for our evaluations. We perform a
leave-one-out cross validation, therefore all eight athletes
from the official training dataset are used in our evaluation.
With this selection, we have real GT shape parameters avail-
able. We do not use these directly, since this would skip
the measuring process that is needed in real applications.
Further, the GT data is not consistent (see Section 3 in the
main paper). Therefore, we apply B2A and use the median
measurements over time in order to simulate the measuring
process and obtain a single set of anthropometric measure-
ments per person. In real applications, this step is omitted
because the anthropometric parameters can be measured di-
rectly from the athletes before starting the recording.

We consider this strategy as a valid method for evalua-
tions, since our main goal is to improve the HME perfor-
mance as much as possible with only marginal overhead.



pose orig. measure NNm SVRm NNn SVRn median
SMPLer-X 86.02 SMPLer-X 85.89 85.69 86.02 8599 | 86.04
SMPLer-X FT  79.09 | SMPLer-X FT  78.92 7888  79.59 79.37 | 79.44
SMPLer-X FT - GT 65.63 6584 6477 64.76 -
SMPLer-X FT - SMPLer-X 7341 7329 7379 73.63 | 73.66
IK-UU 67.54 IK-UU 6692 66.60 6728 67.12 | 67.16
IK-UU - SMPLer-X 63.80 63.64 6392 6378 | 63.82
IK-UU - SMPLer-X FT  69.46  69.27 69.83 69.63 | 69.69
IK-UU - GT 56.44 5656 55.18 55.19 -

Table 11. MPJPE results in mm for the test split of ASPset. Results are given for different methods and replaced beta parameters with A2B
results (columns NN/SVR) or the median of the original 3 parameters from the model noted in the measure column. SMPLer-X FT stands
for the best fine-tuned variant of SMPLer-X (fine-tuned with the meshes obtained from IK executed on the GT 3D joints). The orig column
contains the results without replaced 3 parameters. We highlight the best result for each model and the best option for the combination of
IK-UU pose and SMPLer-X /3 parameters, since this combination outperforms the original IK-UU result, too.

Our main focus is sports, which contains extreme poses that
let existing HME models fail, sometimes even to detect a
human at all. Examples can be found in the supplementary
videos. As professional athletes are measured anyway, the
additional effort for the measurements is negligible in this
context.

12. Inverse Kinematics

We use the inverse kinematics approach with a VPoser ex-
tension, as proposed in the code by [27], to fit SMPLX
meshes to given 3D keypoints. VPoser is a learned prior
for human poses, since the raw SMPL-X model definition
allows impossible poses for humans. VPoser learned plau-
sible poses from the large AMASS [21] dataset and helps IK
to generate only plausible poses. IK learns the best SMPL-
X parameters (3 and 6) that fit the mesh to the given 3D
joint locations by minimizing the error between the given
joint locations and the regressed joint locations from the
mesh. IK is an iterative algorithm and adjusts the pose and
the shape parameters with a gradient descent minimization
approach in each step. Besides the already described joint
error, IK further penalizes abnormal poses with a VPoser
error and extreme body shapes with a 3 parameter error.
Therefore, the total loss for IK can be described as:

L1k = M Ljoint + XaLvposer + A3L3g, (D

whereby L;oin: is the summarized Squared Error of the es-
timated keypoints, Ly poser and Lg are the sums of the
squared values of the VPoser and (3 parameters, respec-
tively. This makes sense since the VPoser and 3 parameter
distributions are centered around zero. We set the weighting
factors A\; = 10, A2 = 0.0007, and A3 = 0.01 in our exper-
iments. We use relatively low values for Ay and A3, since
sports datasets incorporate extreme poses and our main in-
terest is to achieve the most perfect pose.

We execute IK per frame, which results in a slight jit-
ter in between the frames, but leads to more accurate joint
positions. Since IK needs multiple iterations to adjust the
standard T-pose parameters to achieve a pose that is roughly
close to the desired UU pose, we speed up the process by
initializing the pose and shape parameters with the result
from the previous frame if available. This also enhances the
final result slightly. We acknowledge that IK is relatively
slow regarding the runtime, but our main focus is the preci-
sion. For sport analysis, which is our focus, the runtime is
not critical, but a very precise result is crucial.

13. Fine-tuning HME Models with Pseudo GT
Meshes

Fine-tuning existing HME models on pure 3D joints
datasets is not possible, since they need mesh annotations
for training. However, with IK, we can generate pseudo
GT meshes. We exemplary test a fine-tuning of SMPLer-
X on ASPset with this approach. Experiments show that
using their fine-tuning script with 1.6M iterations leads to
worse results than the results without fine-tuning. There-
fore, we reduce the number of iterations with early stopping
and achieve better results with fine-tuning only for 32K it-
erations.

The results shown in Table 11 prove that fine-tuning on
IK generated meshes can lead to a significant improvement
of the scores. Replacing the S parameters of the fine-tuned
results with the A2B /3 parameters boosts the performance
even more. These are the best results achieved with any
existing HME model throughout this study.

Moreover, we experiment with using the SMPLer-X
body shape parameters combined with the poses estimated
by IK applied to the UU results (see last two rows of Ta-
ble 11). Using the S parameters from SMPLer-X leads to a
slightly better result than the original 3D joint based result



(without IK). This evaluation shows that 3D HPE models
are better in precisely locating the joints of humans than
HME models, but HME models are better in estimating
the shape of humans. We also try to use the [ parame-
ters of the fine-tuned variant together with the UU IK poses
like before. However, this resulted in a performance drop
compared to the body shape parameters from the original
SMPLer-X without fine-tuning. These experiments show
that fine-tuning HME models on pseudo ground truth leads
to a better performance regarding the keypoints, but the es-
timated § parameters have worse quality. This can further
be proven by replacing the /3 parameters from the fine-tuned
SMPLer-X variant with the 5 parameters from the not fine-
tuned model, which results in a performance gain of over
5 mm compared to the original results from the fine-tuned
version (rows 2 and 4 in Tab. 11). However, our method
using the UU IK poses and the A2B body shape parameters
with GT anthropometric measurements achieves the overall
best results.

We provide a comprehensive summary and visualization
of all results on the ASPset dataset in Section 14. This in-
cludes results of existing HME models, results of our ap-
proach, and the fine-tuning results.

14. Summary of the Results

We execute a multitude of experiments with different com-
binations of pose and shape parameters. Figure 10 sum-
marizes the results with their pose and shape origins for
ASPset. In general, the poses estimated by IK based on
the UU results (red branch in Fig. 10) are more precise
than the poses estimated by SMPLer-X (light blue branch
in Fig. 10). Further, the body shape parameters from
our A2B models with GT anthropometric measurements
(green boxes in Fig. 10) achieve the best results for all
poses. We provide more qualitative examples comparing
SMPLer-X with this approach in the supplementary video.
Without access to the GT, all models benefit slightly from
A2B model results with the median anthropometric mea-
surements from B2A of the estimated meshes by the respec-
tive model (boxes with same color for all three branches in
Fig. 10). Moreover, SMPLer-X A2B body shape parame-
ters perform best when analyzing body shapes without GT
access (light blue boxes in Fig. 10). Fine-tuning SMPLer-X
with IK created meshes (dark blue branch in Fig. 10) im-
proves the performance of SMPLer-X, although the quality
of the body shape deteriorates. This can be seen as by com-
paring the shapes from SMPLer-X and fine-tuned SMPLer-
X (dark blue and light blue boxes in Fig. 10) with fine-tuned
and IK poses.

Since fit3D is a larger dataset, fine-tuning UU works
better, which further leads to better IK meshes with an
MPIJPE of 37.02mm. Enforcing consistent meshes with
GT or IK A2B shape parameters decreases the performance
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Figure 10. Overview of the main results for the ASPset dataset.
All results are MPJPE results in mm. Results below mesh boxes
show the result with the original 8 parameters. All results after
arrows to the right are results with replaced  parameters. The
type of the 3 parameters is noted on the arrow and is color-coded.

slightly in this case. However, A2B shape parameters
achieve slightly better scores than median values. This also
holds for OSX and Multi-HMR. Overall, the approach with
UU, IK, and A2B body shape parameters achieves an over
33 mm lower MPJPE than any HME model. The same also
holds for the MVE, which can be improved by over 30 mm
with our approach. The scores can be found in the main
paper.

We provide two videos in the supplementary material
that show qualitative results for ASPset and fit3D. Figure
11 shows one example visualization for both datasets. We
include the GT and predicted meshes in the fit3d visualiza-
tion and display the GT and estimated body shapes in T-
pose right next to each other. For ASPset, we visualize the
estimated meshes and the GT and estimated joints, since we
do not have GT meshes here.
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Figure 11. Example frames from our supplementary videos. It shows qualitative results of our approach compared to MultiHMR for fit3d
(left) and qualitative results of SMPLer-X and our approach for example frames from ASPset (right). In fit3d visualizations, we display the
GT meshes in green and the estimated meshes in gray. The GT joints are also displayed in green while the estimated joints from our model
are visualized in blue. The MultiHMR joints are shown in red. Corresponding joints are connected. We display the exact MPJPE values in
the top left of each frame. Recall that the visualization is in 2D, but the evaluation is in 3D. Therefore, sometimes the MPJPE values may
seem odd. In the lower part, we show the estimated body shapes in T-pose. The GT body shape is shown in green and the estimated body
shape from our model in blue. The MultiHMR body shape is shown in red. For ASPset visualizations, we display the estimated meshes
and the GT and estimated joints. GT joints are shown in green, estimated joints from our model in blue. and the SMPLer-X joints in red.
Corresponding joints are connected. In the lower part, we show the GT and estimated joints in the same way, but without the mesh and
image to reduce distraction. We further display the MPJPE values.
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